
 1

The Design of a RISC Architecture
and its Implementation with an FPGA

Niklaus Wirth, 11.11.11, rev. 5.10.13

Abstract

1. Introduction
The idea for this project has two roots. The first was a project to design and implement a small
processor for use in embedded systems with several interconnected cores. It was called the Tiny
Register Machine (TRM). The second root is a book written by this author some 30 years ago, and
revised several times since. Its subject is Compiler Construction. The target for the developed compiler
is a hypothetical computer. In the early years this computer was a stack architecture, later replaced by
a RISC architecture. Now the intent is to replace the hypothetical, emulated computer by a real one.
This idea was made realistic by the advent of programmable hardware components called field
programmable gate arrays (FPGA).

The development of this architecture is described in detail in this report. It is intentionally held in a
tutorial style and should provide the reader with an insight into the basic concepts of processor design.
In particular, it should connect the subjects of architectural and compiler design, which are so closely
interconnected.

We are aware of the fact that “real” processors are far more complex than the one presented here. We
concentrate on the fundamental concepts rather than on their elaboration. We strive for a fair degree of
completeness of facilities, but refrain from their “optimization”. In fact, the dominant part of the vast size
and complexity of modern processors and software is due to speed-up called optimization
(improvement would be a more honest word). It is the main culprit in obfuscating the basic principles,
making them hard, if not impossible to study. In this light, the choice of a RISC (Reduced Instruction
Set Computer) is obvious.

The use of an FPGA provides a substantial amount of freedom for design. Yet, the hardware designer
must be much more aware of availability of resources and of limitations than the software developer.
Also, timing is a concern that usually does not occur in software, but pops up unavoidably in circuit
design. Nowadays circuits are no longer described in terms of elaborate diagrams, but rather as a
formal text. This lets circuit and program design appear quite similar. The circuit description language –
we here use Verilog – appears almost the same as a programming language. But one must be aware
that differences still exist, the main one being that in software we create mostly sequential processes,
whereas in hardware everything “runs” concurrently. However, the presence of a language – a textual
definition – is an enormous advantage over graphical schemata. Even more so are systems (tools) that
compile such texts into circuits, taking over the arduous task of placing components and connecting
them (routing). This holds in particular for FPGAs, where components and wires connecting them are
limited, and routing is a very difficult and time-consuming matter.

The development of our RISC progresses through several stages. The first is the design of the
architecture itself, (more or less) independent of subsequent implementation considerations. Then
follows a first implementation called RISC-0. For this we chose a Harvard Architecture, implying that
two distinct memories are used for program and for data. For both we use chip-internal memory, so-
called block RAMs. The Harvard architecture allows for a neat separation of the arithmetic from the
control unit.

But these blocks of RAM are relatively small (1 - 4K words). The development board used in this
project, however, provides an FPGA-external Static RAM with a capacity of 1 MByte. In the second
stage (RISC-1) the BRAM for data is replaced by this SRAM.

 2

In the third stage (RISC-2) we switch to a von Neumann Architecture. It uses a single memory for both
instructions and data. Of course we use the SRAM of stage 1.

In the last stage (RISC-3) two features are added to round up the development, byte accessing and
interrupts. (They might be omitted in a course without consequences).

It follows that RISC-0 and RISC-2 are the corner stones of this project. But we keep in mind that from a
programmers’ standpoint all four implementations appear identical (with the exception of the features
added in RISC-3). All four have the same architecture and the same instruction set.

2. The RISC Architecture
An architecture describes a computer as seen by the programmer and the compiler designer. It
specifies the resources, i.e. the registers and memory and defines the instruction set. (possibly
implying data types).

Processors consist of two parts, the arithmetic/logic unit (ALU) and the control unit. The former
performs arithmetic and logical operations, the latter controls the flow of operations. In addition to the
processor there is memory. Our RISC consists of a memory whose individually addressable elements
are bytes (8 bits).

The ALU features a bank of 16 registers with 32 bits. 32-bit quantities are called words. Arithmetic and
logical operations, represented by instructions, always operate on these registers. Data can be
transferred between memory and registers by separate load and store instructions. This is an important
characteristic of RISC architectures, developed between 1975 and 1985. It contrasts with the earlier
CISC architectures (Complex instruction set): Memory is largely decoupled from the processor. A
second important characteristic is that every instruction takes one clock cycle for its execution, perhaps
with the exception of access to slower memory. More about this will be presented later. This single-
cycle rule makes such processors predictable in performance. The number of cycles and the time
required for executing any instruction sequence is precisely defined. Predictability is essential in all
real-time applications.

The core of the data processing unit consisting of ALU and registers is shown in Figure1. Evidently,
data cycle from registers into the ALU, where an operation is performed, and the result is deposited
back into a register.

Fig. 1. Processor core with ALU and registers

Register
bank

ALU

a

b c
constant
from IR

 3

The control unit contains a register holding the instruction currently being under execution. This is
called the instruction register (IR). It also features a register holding the address of the instruction being
fetched from program memory. This is traditionally called the program counter (PC). The control unit
computes the address of the next instruction. As this is mostly the one in sequence, i.e. with address
PC+1, the control unit also holds an incrementer. Branch instructions take the next address from the
instruction register.

External devices are mapped into the address space of memory. This means that a certain range of
addresses is reserved for access to input and output devices.

3. The Instruction Set
The term “reduced” suggests that keeping the instruction set small is a good concept. But how much
can one reduce it? Is there a lower limit? Which are its criteria? There is, of course, no clear cut
measure. An important goal is a certain completeness. An instruction set should make it possible to
compose any more complex operation out of the basic instructions, The second goal must be
regularity, straight rules without exceptions. It facilitates description, understanding, and
implementation enormously.

The principal enemy of regularity and simplicity is the drive for speed, for efficiency. We place priority
on a simple, regular design. Improvements to increase speed can be added at a later stage. A sound
rule to begin is that instructions simple to implement should have priority. Among them are certainly all
logical operations, and because of their frequency the basic arithmetic operations such as addition and
subtraction.

The RISC architecture divides instructions into three classes, namely (1) arithmetic and logic
instructions operating on registers, (2) operations to transfer data between registers and memory, and
(3) control (branch) instructions.

3.1. Register instructions
We follow the established convention to provide instructions with 3 register numbers, two specifying
the operands (sources), one the result (destination). Thus we obtain a 3-address computer. It gives
compilers the largest degree of freedom to allocate registers for optimal efficiency. Logical operations
are the conventional AND, OR, XOR. The arithmetic operations are the four basic operations of
addition, subtraction, multiplication and division. The inclusion of the latter two is to some degree
questionable. They are considered basic in mathematics, although they can be constructed out of
addition or subtraction. Their complexity is indeed of a higher order. This must be paid by higher “cost”,
either in time or circuitry.

Furthermore, we include a set of shift instructions, moving bits horizontally. In fact, a single one,
namely rotation would suffice. Rotation is the best choice because it loses no information, and thus all
other can be constructed out of it. However, we also provide left shift (LSL) and (arithmetic) right shift
(ASR). The former feeds zeroes in at the low end, the latter replicates the top bit at the right end. The
shift count can be any number between 0 and 31.

All 16 register instructions use the same two forms. In form F0, both operands are registers. In format
F1 one operand is a register, the other is a constant held in the instruction itself. In format F1,

The complete set of register instructions is shown the following Table 1 in an assembler-like form. R.a
is the destination register, and R.b is the first operand. The second operand is either register R.c, or
the literal ("immediate") im. In this case, the modifier bit v determines how the 16-bit constant im is
extended into a 32-bit value. The two forms of instructions are encoded as shown in Fig. 2 n stands for
either R.c or im.

0 MOV a, n R.a := n
1 LSL a, b, n R.a := R.b ← n (shift left by n bits)
2 ASR a, b, n R.a := R.b → n (shift right by n bits with sign extension)
3 ROR a, b, n R.a := R.b rot n (rotate right by n bits)

 4

4 AND a, b, n R.a := R.b & n logical operations
5 ANN a, b, n R.a := R.b & ~n
6 IOR a, b, n R.a := R.b or n
7 XOR a, b, n R.a := R.b xor n
8 ADD a, b, n R.a := R.b + n integer arithmetic
9 SUB a, b, n R.a := R.b – n
10 MUL a, b, n R.a := R.a х n
11 DIV a, b, n R.a := R.b div n

12 FAD a, b, c R.a := R.b + R.c floating-point arithmetic
13 FSB a, b, c R.a := R.b – R.c
14 FML a, b, c R.a := R.a х R.c
15 FDV a, b, c R.a := R.b / R.c

v = 0 extension of im with 16 zero bits
v = 1 extension of im with 16 one bits

Table 1. Register instructions

Fig.2. Formats F0 and F1. for register instructions

All register instructions (with the exception of multiplication and division) have side effects on the four
single-bit condition registers, namely

N := bit 31 of result. Hence, N indicates whether the result is negative.
Z := all bits of result zero. Z indicates whether the result is zero.
C := carry out bit. (For addition and subtraction only).
V := overflow. (For addition and subtraction only)

These four condition registers are tested by branch instructions. The DIV instruction deposits the
remainder in an auxiliary register H.

Register instructions contain two modifier bits u and v. The instruction MOV with u set to 1 shifts the
immediate value im by 16 bits to the left. Instructions ADD and SUB with the modifier bit u set to 1 add
(subtract) the carry bit C, and the MUL instruction with u set to 1 considers the operands as unsigned
numbers, yielding a 64-bit unsigned product.

3.2. Memory instructions
There are only two memory instructions, namely load and store. They specify a destination register R.a
for load, or a source register for store. The address in memory is the sum of register R.b and a 20-bit
offset. The format is shown in Figure 3.

LD a, b, off R.a := Mem[R.b + off]
ST a, b, off Mem[R.b + off] := R.a

Fig. 3. Format F2 for memory instructions

00u0 a b op c

01uv a b im op

4 4 4 4 4 12

16

F0

F1

F2 10uv a b off

4 4 4 20

 5

The modifier bits have the following significance:

u = 0 load, u = 1 store
v = 0: word, v = 1: byte (implemented on RISC-3 only)

3.3. Branch instructions
Branch instructions are used to break the sequence of instructions. The next instruction is designated
either by a 24-bit signed offset, or by the value of a register, depending on the modifier bit u. It
indicates the length of the jump forward or backward (PC-relative addressing). This offset is in words,
not bytes, as instructions are always one word long.

Bcond off

u = 0 PC := R.c u = 1 PC := PC+1+off
v = 0 no link v = 1 R15 := PC+1

The modifier v determines, whether the current value of PC be stored in register R15 (the link register).
This facility is used for calls to procedures. The value stored is then the return address. The format is
shown in Fig. 4.

Fig. 4. Format F3 of branch instructions

The following conditions are available:

code cond condition code cond condition

0000 MI negative (minus) N 1000 PL positive (plus) ~N
0001 EQ equal (zero) Z 1001 NE positive (plus) ~Z
0010 CS carry set C 1010 CC carry clear ~C
0011 VS overflow set V 1011 VC overflow clear ~V
0100 LS less or same ~C|Z 1100 HI high ~(~C}Z)
0101 LT less than N≠V 1101 GE greater or equal ~(N≠V)
0110 LE less or equal (N≠V)|Z 1110 GT greater than ~((N≠V)|Z)
0111 true T 1111 false F

4. Implementing a Harvard Architecture (RISC-0)
The building of circuits involves physical components, such as gates and registers, and wires
connecting them. The use of a modern FPGA on a chip facilitates this task tremendously. There is no
need to select component chips with registers, mutiplexers, or decoders, and no need to hard-wire
them with soldering iron or wire-wrap gun. Instead, the circuit description is fed to a tool consisting of a
synthesizer, a placer (selecting appropriate elements from the ones available on-chip), and a router
(using the available wires to connect them).

Although this scheme has simplified hardware design drastically, there still exist the limitations of
available components and of routing resources. If a design becomes too complex, or too large, the tool
may not be able to perform its task Therefore, we have a strong incentive to keep our design
reasonably simple and well structured.

In addition and in contrast to software design, there exists the consideration of timing. Signals
propagate with finite speed. Each gate introduces a certain delay. We must keep path lengths, the
number of gates a signal passes between its origin register and its destination register, small. The
timing considerations are greatly simplified, if we adhere to synchronous design. This implies that all

110v cond

4 4

F3

111v cond off F3

c

4

 6

registers are run by the same clock. The FPGA provides special wiring for clock signals in order to
keep clock skew limited and ignorable.

We describe the circuit by a program text in the HDL Verilog, and we stick to the following scheme,
where a module consists of 4 parts:

1. The header with the list of input and output signals (parameters).
2. The declaration part, introducing the names of signals (wires) and registers.
3. The assignments of (Boolean) values to signals (wires)..They have the form

assign s = expression;

4. The assignments to registers. They have the form

R <= expression;

and occur under the heading

always @ (posedge clk) begin ….. end

where clk is the global clock signal.

There are two input signals occurring in the header of every module, namely clk and rst. The latter is a
negative reset signal (in our case activated by a push button).

The RISC system consists of several modules. The principal module is called RISC0, and it
implements the processor. There are two submodules implementing a multiplier and a divider. There is
also a module called RISC0Top, representing the processor’s “environment”. It is a Verilog rule that
only a top module can import off-chip signals. This module contains the connections to external
devices. They include an RS-232 transmitter and an RS-232 receiver, representing a serial line. The
module also contains the connections to a set of 8 LEDs and to 8 switches. This configuration is shown
in Figure 5.

Fig. 5. Block diagram of the RISC-0 configuration

The header of module RISC0 lists its parameters, signals to and from the “environment”:

input clk, rst,
input [31:0] inbus, codebus,
output [11:0] adr,
output rd, wr,
output [31:0] outbus

4.1. The computation unit (ALU)

RISC0Top

RISC0 RS-232R RS-232T

Multiplier Divider

clk rst RxD TxD led swi

 7

As mentioned earlier, the processor is divided into two parts, the computation unit and the control unit.
In the block diagram of Figure 6 the computation unit is to the left, the control unit to the right, and it is
evident that they are connected by a few wires only.

The heart of the computation unit is the bank of registers, each of the 16 registers with 32 bits. From
the description of the architecture it is evident that there must be 3 output ports corresponding to the
register numbers a, b, and c (fields in the register instructions)., plus one output port addressed by a.
Here we consider the register bank as a “black box” with the following input and output signals. We will
return to further details of implementation later in this text.

A data output port (32 bit)
B data output port (32 bit)
C0 data output port (32 bit)
D data input port (32 bit)
ira0 address of ports A and D (4 bit)
irb address of port B (4 bit)
irc address of port C0 (4 bit)
clk clock
regwr write enable

Fig.6. Block diagram of computation unit

Before proceeding, we postulate the following auxiliary signals derived from the instruction register IR,
representing instruction fields and their decoding (see instruction formats in Ch. 3).

IR = pmout; instruction from program memory
p = IR[31]; instruction fields
q = IR[30];
u = IR[29];
v = IR[28];
w = IR[16];
cc = IR[26:24];

Data

Register
Bank

16 x 32

Data Memory

B C0

offset

Shifter

adr

ALU

A

imm

+

regmux

PC IR

 8

ira = IR[27:24];
irb = IR[23:20];
op = IR[19:16];
irc = IR[3:0];
imm = IR[15:0];
off = IR[19:0];

MOV = ~p & (op == 0); decode signals
LSL = ~p & (op == 1);
ASR = ~p & (op == 2);
ROR = ~p & (op == 3);
AND = ~p & (op == 4);
ANN = ~p & (op == 5);
IOR = ~p & (op == 6);
XOR = ~p & (op == 7);
ADD = ~p & (op == 8);
SUB = ~p & (op == 9);
MUL = ~p & (op == 10);
DIV = ~p & (op == 11);

LDW = p & ~q & ~u;
STW = p & ~q & u;
BR = p & q;

From the block diagram of Fig. 6 we now derive the following expressions for further signals:

ira0 = (BR) ? 15 : ira; return address of BL to R15
C1 = ~q ? C0 : {{16{v}}, imm};

aluRes =
 MOV ? C1 :
 LSL ? t3 : left shifter output
 ASR ? s3 : right shifter output
 ROR ? s3 : right shifter output
 AND ? B & C1 :
 ANN ? B & ~C1 :
 IOR ? B | C1 :
 XOR ? B ^ C1 :
 ADD ? B + C1 + (u & C) :
 SUB ? B - C1 – (u & C) :
 MUL ? product[31:0] : multiplier output
 DIV ? quotient : 0; divider output

regmux = register input D
 (LDW & ~ioenb) ? dmout from memory :
 (LDW & ioenb) ? inbus from input bus :
 (BR & v) ? {18'b0, nxpc, 2'b0} : aluRes return address from control unit;

In most instructions, the result regmux is stored in a register. The exceptions are:

Branch instructions, unless the return address is to be saved (BR & ~u)
Branch instructions whose condition is not met (BR & ~cond)
Store instructions
Stalls (discussed later)

The register set is represented by an array of 16 registers:

reg [31:0] R [0:15]

Writing to registers is controlled by the signal regwr, defined as follows:

regwr = (~p & ~stall) | (LDW & ~stall & ~stall1) (BR & cond & v);

 9

In addition to the data registers, four single-bit registers are provided to hold some predicates of the
computed result. They are traditionally called condition codes, and they are used (tested) by branch
instructions. These registers are

N <= aluRes[31] result is negative
Z <= (aluRes[31:0] == 0) result is zero
C <= aluRes[32] carry out
OV <= aluRes[32] ^ aluRes[31] overflow

N and Z are set by all register operations, C and V by additions and subtractions only. Sums and
differences are 33 bit wide, Bit 32 is the carry out (overflow for unsigned arithmetic).

Parallel to the path from register output to register input through the ALU lies the path through two
shifters, one for left, one for right shifts. Shifters are, like circuits for logical and arithmetic operations,
entirely combinational circuits. They consist of multiplexers only. The left shift (LSL) feeds zero bits to
the right.

A basic element on our FPGA are “lookup tables” with 4 inputs and a single output resulting from any
function of the inputs. Hence, a 4-input multiplexer is the preferred element. In order to be able to shift
by any amount between 0 and 31, three stages are required. The first shifts by 0, 1, 2, or 3 bits, the
second by 0, 4, 8, or 12 bits, and the third by 0 or 16 bits. The following signals are involved:

wire [31:0] t1, t2, t3;
wire [1:0] sc1, sc0; // shift counts

The shifter input is B, its output is t3. The intermediate outputs between multiplexers are t1 and t2. The
shift count is split into

assign sc0 = C1[1:0];
assign sc1 = C1[3:2];

assign t1 = (sc0 == 3) ? {B[28:0], 3'b0} : // shifter for LSL
 (sc0 == 2) ? {B[29:0], 2'b0} :
 (sc0 == 1) ? {B[30:0], 1'b0} : B;
assign t2 = (sc1 == 3) ? {t1[19:0], 12'b0} :
 (sc1 == 2) ? {t1[23:0], 8'b0} :
 (sc1 == 1) ? {t1[27:0], 4'b0} : t1;
assign t3 = C1[4] ? {t2[15:0], 16'b0} : t2;

The right shifter is quite similar. It implements both right shift and right rotation (determined by u). In the
former case, bits shifted in at the left end are replicas of the leftmost (sign) bit B[31], whereas for
rotation they are taken from the right end.

wire [31:0] s1, s2, s3;

assign s1 = (sc0 == 3) ? {(w ? B[2:0] : {3{B[31]}}), B[31:3]} : // shifter for ASR and ROR
 (sc0 == 2) ? {(w ? B[1:0] : {2{B[31]}}), B[31:2]} :
 (sc0 == 1) ? {(w ? B[0] : B[31]), B[31:1]} : B;
assign s2 = (sc1 == 3) ? {(w ? s1[11:0] : {12{s1[31]}}), s1[31:12]} :
 (sc1 == 2) ? {(w ? s1[7:0] : {8{s1[31]}}), s1[31:8]} :
 (sc1 == 1) ? {(w ? s1[3:0] : {4{s1[31]}}), s1[31:4]} : s1;
assign s3 = C1[4] ? {(w ? s2[15:0] : {16{s2[31]}}), s2[31:16]} : s2;

And this concludes the explanation of the computation unit of the processor.

4.2. The data memory
The data memory DM is represented in our case by a so-called Block RAM, a facility provided by the
FPGA used. (Its name is dbram32), and it has the following signals:

wire [31:0] dmin, dmout; input and output ports
wire dmwr; write enable

 10

wire [13:0] dmadr; memory address

dmin = A;
dmwr = STW & ~stall;
dmadr = B[13:0] + off[13:0];

The memory is configurable as a 2K (or 4K) block. Its elements are 32-bit words. As the RISC uses
byte addresses, the address fed to the RAM is actually dmadr[12:2], and only words, not bytes can be
accessed.. Address bits 0 and 1 are ignored. (The stall signal will be explained later).

4.3. The control unit
The control unit determines the sequence of executed instructions. It contains two registers, the
program counter PC holding the address of the current instruction, and the current instruction register
IR holding the instruction currently being interpreted. Instructions are obtained from the program
memory PM, also a Block RAM with 2K words and the signals

wire [31:0] pmout; output port
wire [11:0] pcmux; memory address

The principal task of this unit is to generate the address of the next instruction. There are essentially
only four cases:

0. Zero on reset.
1. The next instructions address is the current one’s (PC) plus 1
2. It is given by the instruction explicitly. (Branch instructions).
3. It is taken from a data register. (This is used for returning from procedures).

In a Harvard architecture, computational and control units operate simultaneously. In each clock cycle,
the control unit fetches the next instruction for the program memory into the instruction register IR, and
the computation unit operates on registers (or on the data memory). As an example the short
instruction sequence

0 ADD R0 R0 2
1 SUB R0 R0 1
2 B 0

 is traced as follows over 5 clock cycles:

pcmux IR PC R0

0
1 ADD 0 0
2 SUB 1 2
0 B 2 1
1 ADD 0 1
2 SUB 1 3

The control unit is quite straight-forward, as show in Figure 7, and defined by the following
expressions:

IR = pmout;
nxpc = PC + 1;
pcmux = (~rst) ? 0 :
 (stall) ? PC : // do not advance
 (BR & cond & u) ? off[11:0] + nxpc :
 (BR & cond & ~u) ? C0[13:2] : nxpc;

always @ (posedge clk) PC <= pcmux; end

Here we notice that all branch instructions are subject to a condition. The condition is specified by the
condition field of the instruction and is a logical function of the 4 condition registers N, Z, C, V. The
signal cond is defined as

 11

cond = IR[27] ^ IR[27] inverts sense
 ((cc == 0) & N | MI, PL
 (cc == 1) & Z | EQ, NE
 (cc == 2) & C | CS, CC
 (cc == 3) & OV | VS, VC
 (cc == 4) & (C|Z) | LS, HI
 (cc == 5) & S | LT, GE
 (cc == 6) & (S|Z) | LE, GT
 (cc == 7)); T, F

Fig. 7. The control unit

The memory block of the FPGA already contains an output register. For this reason IR is actually
declared as a wire, but not as a register (which is represented by pmout). Note that the memory has clk
as an input signal. This seemingly trivial and incidental detail has yet another consequence.

As the address signal travels through the decoder and the selected value proceeds to this output
register, the read value is actually available only in the next cycle after the address was applied to the
memory. This implies that actually the reading of a value takes 2 cycles. This contradicts the rule that
in RISCs every instruction be executed in a single cycle. However, memory access is considered as a
special case, and provisions must be made to allow it to take longer.

The device to solve this problem is stalling the processor, i.e. to retain it in the same state over 2 or
more cycles. This is achieved by simply generating a stall signal which, if active, feeds PC itself to the
multiplxer. In our case, this signal must arise when a LD instruction is present, and it must remain
active for exactly one clock period. This is achieved by the following circuit with signals shown in Figure
8::

reg stall1;
wire stall, stallL;

stall = stallL;
stallL = LDW & ~stall1;
stall1 <= stallL;

This circuit actually represents a very simple state machine.

Program counterInstr Reg

+ 1

Program Memory

adr

C0 +

decode

pcmux

off

nxpc

IR, cond

 12

Fig. 8. Stall generation for memory access

4.4. The multiplier
Multiplication is an inherently more complex operation than addition and subtraction. After all,
multiplication can be composed (of a sequence) of additions. By not vice-versa. There are many
methods to implement multiplication, all – of course – based on the same concept of a series of
additions. They show the fundamental problem of trade-off between time and space (circuitry). Some
solutions operate with a minimum of additional circuitry – actually without – but sacrifice speed. These
are the implementations in software. Naturally, they perform the necessary additions in sequence. The
partial sums are stored in variables. At the other end of the spectrum lie solutions which use a multitude
of adders operating concurrently (in parallel). They are fast, but the amount of required circuitry is high.

And, of course, there are solutions that lie in between these extremes. We here present such a middle
solution. It needs a single adder only and performs additions in sequence, with partial sums stored in a
special register. The sequence of additions is triggered by a single multiply instruction, which makes
this solution still faster than a pure software solution, which would typically be presented as a
procedure.

Let us briefly recapitulate the basics of a multiplication p := x × y. Here p is called the product, x the
multiplier, and y the multiplicand. Let x and y be unsigned integers. Consider x in binary form.

x = x31×231 + x30×230 + … + x1×21 + x0×20

We obtain the product by a sequence of 32 additions, each term of the form xk×2k×y, i.e. of y left shifted
by k positions multiplied by xk. Since xk is either 0 or 1, the product is either 0 or y (shifted).
Multiplication is thus performed by an adder and a selector.

The selector is controlled by xk, a bit of the multiplier. Instead of selecting this bit among x0 … x31, we
right shift x by one bit in each step. Then the selection is always according to x0. This suggests that
instead of shifting y to the left in each step, we keep y in the same position and shift the partial sum p to
the right. We notice that the size of x decreases by 1 in each step, whereas the size of p increases by
1. This suggests to pack p and x into a single register pair <B,A> with a shifting border line. At the end,
it contains the 64-bit product p = x × y.

p = {B[31:0], A{31:[32-k]}, x = A[31-k:0] k = 0 … 31

The multiplier is controlled by a rudimentary state machine S, actually a simple 5-bit counter running
from 0 to 31. The multiplier is shown schematically in Figure 9.

The multiplier interprets its operands as signed (u = 0) or unsigned (u = 1) integers. The difference
between unsigned and signed representation is that in the former case the first term has a negative
weight (-x31×231). Therefore, implementation of signed multiplication requires very little change: Term 31
is subtracted instead of added (see complete program listing below).

LDW

stallL

stall1

 13

Fig. 9. Schematic of multiplier

During execution of the 32 add-shift steps the processor must be stalled. The process proceeds and the
counter S advances as long as the input MUL is active (high). MUL indicates that the current operation
is a multiplication, and the signal is stable until the processor advances to the next instruction. This
happens when step 31 is reached:

stall = MUL & ~(S == 31);
S <= MUL ? S+1 : 0;

Fig. 10. Generating stall

The details of the multiplier are listed below:

module Multiplier(
 input CLK, MUL, u,
 output stall,
 input [31:0] x, y,
 output [63:0] z);

reg [4:0] S; // state
reg [31:0] B2, A2; // high and low parts of partial product
wire [32:0] B0, B00, B01;
wire [31:0] B1, A0, A1;

assign stall = MUL & ~(S == 31);
assign B00 = (S == 0) ? 0 : {B2[31] & u, B2};
assign B01 = A0[0] ? {y[31] & u, y} : 0;
assign B0 = ((S == 31) & u) ? B00 - B01 : B00 + B01;
assign B1 = B0[32:1];
assign A0 = (S == 0) ? x : A2;
assign A1 = {B0[0], A0[31:1]};
assign z = {B1, A1};

always @ (posedge(CLK)) begin
 B2 <= B1; A2 <= A1;
 S <= MUL ? S+1 : 0;
end

S

B A

+

0 0 y

shift shift

x

MUL

0 1 30 31

stall

 14

endmodule

Implementing multiplication in hardware made the operation about 30 times faster than its solution by
software. A significant factor! As multiplication is a relatively rare operation – at least in comparison with
addition and subtraction – early RISC designs (MIPS, SPARC, ARM) refrained from its full
implementation in hardware. Instead, an instruction called multiply step was provided, performing a
single add-shift step. A multiplication was then programmed by a sequence of 32 step instructions,
typically provided as a subroutine.

4.5. The divider
Division is similar to multiplication in structure, but even slightly more complicated. We present its
implementation by a sequence of 32 shift-subtract steps, the complement of add-shift. We here discuss
division of unsigned integers only.

q = x DIV y r = x MOD y

q is the quotient, r the remainder. These are defined by the equation

x = q×y + r with 0 ≤ r < y

Both q and r are held in registers. Initially we set r to x, the dividend, and then subtract multiples of y
(the divisor) from it, each time checking that the result is not negative. The shift-subtract step is

r := 2*r; q := 2*q;
IF r – y >= 0 THEN r := r – y END

Initially, r may be a 64-bit value; its size decreases by 1 in each step. q is initially 0, and its size
increases by 1 in each step, suggesting to use a single double register with shifting border. This is the
same as in multiplication, except that the shift is to the left.

Fig. 11. Schematic of divider

Stall generation is the same as for the multiplier. Further details are shown in the subsequent program
listing.

module Divider(
 input clk, DIV,
 output stall,
 input [31:0] x, y,
 output [31:0] quot, rem);

reg [4:0] S; // state
reg [31:0] r3, q2;
wire [31:0] r0, r1, r2, q0, q1, d;

assign stall = DIV & ~(S == 31);
assign r0 = (S == 0) ? 0 : r3;

S

R Q

–

0 0 y

shift shift

x

d

 15

assign d = r1 - y;
assign r1 = {r0[30:0], q0[31]};
assign r2 = d[31] ? r1 : d;
assign q0 = (S == 0) ? x : q2;
assign q1 = {q0[30:0], ~d[31]};
assign rem = r2;
assign quot = q1;

always @ (posedge(clk)) begin
 r3 <= r2; q2 <= q1;
 S <= DIV ? S+1 : 0;
end
endmodule

4.6. The environment
The RISC-0 processor module is imported by module RISC0Top, which thereby represents the
processor’s environment. Apart from providing clock and reset signals, it connects various devices with
the processor’s input and output busses, and selects them according to the i/o address. These devices
are

0. A counter incremented every millisecond (adr = 0)
1. A set of 8 dip switches (adr = 4)
2. A set of 8 light emitting diodes (LED) (adr = 4)
3. An RS-232 receiver (serial data line) (adr = 8, 12)
4. An RS-232 transmitter (adr = 8, 12)

The RS-232 receiver and transmitter are described in subsequent chapters, the top module itself is
listed here with the omission of clock generation). The clock frequency is 35 MHz. The signals in its
heading refer to off-chip components (see also Fig. 5)..

module RISC0Top(
 input CLK50M,
 input rstIn,
 input RxD,
 input [7:0] swi,
 output TxD,
 output [7:0] leds);

wire clk, clkLocked;
reg rst;

wire[5:0] ioadr;
wire [3:0] iowadr;
wire iowr;
wire[31:0] inbus, outbus;

wire [7:0] dataTx, dataRx;
wire rdyRx, doneRx, startTx, rdyTx;
wire limit; // of cnt0

reg [7:0] Lreg;
reg [15:0] cnt0;
reg [31:0] cnt1; // milliseconds

RISC0 riscx(.clk(clk), .rst(rst),

 16

 .iord(iord), .iowr(iowr), .ioadr(ioadr), .inbus(inbus), .outbus(outbus));

RS232R receiver(.clk(clk), .rst(rst), .RxD(RxD), .done(doneRx), .data(dataRx), .rdy(rdyRx));
RS232T transmitter(.clk(clk), .rst(rst), .start(startTx), .data(dataTx), .TxD(TxD), .rdy(rdyTx));

assign iowadr = ioadr[5:2];
assign inbus = (iowadr == 0) ? cnt1 :
 (iowadr == 1) ? swi :
 (iowadr == 2) ? {24'b0, dataRx} :
 (iowadr == 3) ? {30'b0, rdyTx, rdyRx} : 0;

assign dataTx = outbus[7:0];
assign startTx = iowr & (iowadr == 2);
assign doneRx = iord & (iowadr == 2);
assign limit = (cnt0 == 35000);
assign leds = Lreg;

always @(posedge clk)
begin
 rst <= ~rstIn & clkLocked;
 Lreg <= ~rst ? 0 : (iowr & (iowadr == 1)) ? outbus[7:0] : Lreg;
 cnt0 <= limit ? 0 : cnt0 + 1;
 cnt1 <= limit ? cnt1 + 1 : cnt1;
end
endmodule

4.7. The RS-232 transmitter
RS-232 is an old standard for serial data transmission. We chose to describe it here because of its
inherent simplicity. The data are transmitted in packets of a fixed length, here of length 8, i.e. byte-wise.
Bytes are transmitted asynchronously. Their beginning is marked by a start-bit, and at the end a stop-bit
is appended. Hence, a packet is 10 bits long (see Fig. 10). Within a packet, transmission is
synchronous, i.e. with a fixed clock rate, on which transmitter and receiver agree. The standard defines
several packet lengths and many clock rates. Here we use 19200 bit/s.

Fig. 10. RS-232 packet format

The input signal start triggers the state machine by setting register run. The transmitter has 2 counters
and a shift register. Counter tick runs from 0 to 1823, yielding a frequency of .35’000 / 1823 = 19.2 KHz,
the transmission rate for bits. The signal endtick advances counter bitcnt, running from 0 to 9 (the
number of bits in a packet). Signal endbit resets run and the counter to 0. Signal rdy indicates whether
or not a next byte can be loaded and sent.

module RS232T(
 input clk, rst,
 input start, // request to accept and send a byte
 input [7:0] data,
 output rdy, // status
 output TxD); // serial data

start bit stop bit

 17

wire endtick, endbit;
reg run;
reg [11:0] tick;
reg [3:0] bitcnt;
reg [8:0] shreg;

assign endtick = tick == 1823;
assign endbit = bitcnt == 9;
assign rdy = ~run;
assign TxD = shreg[0];

always @ (posedge clk) begin
 run <= (~rst | endtick & endbit) ? 0 : start ? 1 : run;
 tick <= (run & ~endtick) ? tick + 1 : 0;
 bitcnt <= (endtick & ~endbit) ? bitcnt + 1 :
 (endtick & endbit) ? 0 : bitcnt;
 shreg <= (~rst) ? 1 : start ? {data, 1'b0} :
 endtick ? {1'b1, shreg[8:1]} : shreg;
end
endmodule

4.8. The RS-232 receiver
The receiver is structured very similarly with 2 counters and a shift register. The state machine is
triggered by an incoming start bit at RxD. The state rdy is set when the last data bit has been received,
and it is reset by the done signal, generated when reading a byte. The line RxD is sampled in the
middle of the bit period rather than at the end, namely when midtick = endtick/2.

module RS232R(
 input clk, rst,
 input done, // "byte has been read"
 input RxD,
 output rdy,
 output [7:0] data);

wire endtick, midtick;
reg run, stat;
reg [11:0] tick;
reg [3:0] bitcnt;
reg [7:0] shreg;

assign endtick = tick == 1823;
assign midtick = tick == 911;
assign endbit = bitcnt == 8;
assign data = shreg;
assign rdy = stat;

always @ (posedge clk) begin
 run <= (~RxD) ? 1 : (~rst | endtick & endbit) ? 0 : run;
 tick <= (run & ~endtick) ? tick + 1 : 0;
 bitcnt <= (endtick & ~endbit) ? bitcnt + 1 :
 (endtick & endbit) ? 0 : bitcnt;
 shreg <= midtick ? {RxD, shreg[7:1]} : shreg;
 stat <= (endtick & endbit) ? 1 : (~rst | done) ? 0 : stat;
end
endmodule

 18

5. Implementing a von Neumann Architecture
The presented Harvard Architecture uses separate memories for program and data. The advantage is
that instruction fetch and data execution can proceed concurrently. It was the revolutionary idea of
John von Neumann to merge the two. This made it possible to treat program code as data and to
perform operations on it. This was, for example, used for adding an array of numbers stored in
consecutive memory cells, typically performed by a tight program loop. Before each iteration, the
address of the instruction fetching the value to be added is incremented by 1.

This trick was made redundant by the later addition of index registers. Now computed values would
automatically be added to the constant in the instruction to form the effective address. In general,
modification of program code during execution proved to be a technique loaded with pitfalls, and it is
now virtually extinct. However, on a larger scale, loading of a (new) program is also based on von
Neumann’s concept of shared program and data memory, a feature without which computers are
unthinkable. Yet, the Harvard architecture is still used in applications, where the computer always
executes the same program. This is mostly the case in embedded applications for sensing data or
controlling machinery. Its advantage is a gain in speed, because program and data memories are
accessed concurrently.

5.1. Using the large memory (RISC-1)
Before proceeding to a conversion of our RISC to the von Neumenn scheme, we show the
replacement of the small 2K Block-RAM for data storage by the large 1 MByte SRAM. This large
memory is not part of the FPGA chip, but resides outside the FPGA on the Spartan-3 board. This
necessitates that also the environment of the RISC be adapted. We start by showing the changes
necessary in the processor circuit, rather than re-listing the entire circuit, and we start with the
processor itself.

First of all, the address signals are widened from 12 to 20 bits, the output adr is widened from 5 to 20
bits.

output [19:0] adr;
adr = B[19:0] + off;

The data BRAM dm is removed, and with it the following signals:

dmadr, dmwr, dmin, dmout, ioenb

Connection to the SRAM is through the module’s interface (header), and thus the separation of
memory access and external device access is made in the environment (RISC1Top) rather than the
processor module. The signals iowr and iord are now simply wr, rd.

So far, the changes are all removals resulting in simplifications. Memory access will now occur via the
environment like access to external devices, and the selector between memory and devices is
therefore moved to the environment. Hence, it is the environment that receives the extensions. This is
so, because the SRAM is external to the FPGA, and access via the FPGA’s pins can only be specified
in a top module. They appear in its parameter list:

module RISC1Top(…
 output SRce0, SRce1, SRwe, SRoe,
 output [3:0] SRbe,
 output [19:0] SRadr,
 inout [31:0] SRdat);

The new declarations are

wire[19:0] adr;
wire [17:0] iowadr; // word address
wire rd, wr, ioenb;
wire[31:0] inbus, inbus0, outbus;

RISC1 riscx(.clk(clk), .rst(rst), .rd(rd), .wr(wr),.adr(adr), .inbus(inbus), .outbus(outbus));

 19

The new signals (wires) obtain the following values:

assign iowadr = adr[5:2];
assign ioenb = (adr[19:6] == 14'b11111111111111);
assign inbus = ~ioenb ? inbus0 :
 ((iowadr == 0) ? cnt1 :
 (iowadr == 1) ? swi :
 (iowadr == 2) ? {24'b0, dataRx} :
 (iowadr == 3) ? {30'b0, rdyTx, rdyRx} : 0);

assign SRce0 = 1'b0;
assign SRce1 = 1'b0;
assign SRwe = ~wr | clk;
assign SRoe = ~rd;
assign SRbe = 4'b0;
assign SRadr = adr[19:2];

genvar i;
generate // tri-state buffer for SRAM
 for (i = 0; i < 32; i = i+1)
 begin: bufblock
 IOBUF SRbuf (.I(outbus[i]), .O(inbus0[i]), .IO(SRdat[i]), .T(~wr));
 end
endgenerate

The last paragraph specifies the tri-state buffer SRbuf. It is required, because the SRAM is connected
with the FPGA by a single, bi-directional bus SRdat. The circuits are shown schematically in Fig. 11.

Fig. 11. Connections between processor and SRAM

The write strobe wr determines the direction of the tri-state buffer. An absolutely essential detail is that
the write strobe be ored with the clock signal (~wr | clk). This is to activate writing only in the second
half of the clock period. The SRAM is a combinational circuit, and writing must wait until the address
lines are stable, which is the case in the second half of the cycle. The various enable signals ce0, ce1,
be are all active (low). (Note that like in RISC0 we deal with word transfers only, without byte
selections. The least 2 address bits are ignored)

As an aside, we note that the SRAM is fast enough and is without a register at data output. This
makes a stall cycle unnecessary, again simplifying the processor. The clock rate is 35 MHz.

5.2. Using SRAM for program and data (RISC-2)

SRAM

outbus

SRdat inbus0 intbus

SRbuf

swi

aluRes

nxpc

RISC1Top RISC1

adr

SRwe
SRoe
SRadr

regmux

 20

We are now in a position to unite program and data memories following the concept of von Neumann.
There is practically no change in the top module, except that inbus0 is also brought to the interface. It
lets instructions bypass the multiplexer for input from external devices. Let us consider the evolution of
the processor.

First we note the widening of PC (and pcmux and nxpc) from 12 to 18 bits. Because instructions are
always 4 bytes long, their address is always a multiple of 4. Hence, the address path is not 20 (as
would be needed for 1 MB), but only 18 bits wide. This concerns the declarations

output [19:0] adr;
reg [17:0] PC;
wire [17:0] pcmux, nxpc;

In addition, the following changes are necessary:

regmux = ….. (BR & v) ? {12'b0, nxpc, 2'b0} : aluRes;
pcmux = ….. (BR & cond & ~u) ? C0[19:2] : nxpc;

When using the on-chip block RAM for program memory, the instruction register is contained within
the RAM. Its output pmout is a register. This is not so for the SRAM, and therefore a register has to be
declared explicitly. We call it IRBuf:

reg [31:0] IRBuf;
wire [31:0] IR;
 IR = IRBuf;
 IRBuf <= codebus;

But this is only part of the story. We need to review the entire fetch/execute mechanism. Every
instruction is first fetched from memory into the instruction register. It is interpreted (executed) in the
next cycle. In order to double speed, the instruction flow is pipelined: While an instruction is executed,
the next instruction is fetched. This works fine in the case of the Harvard architecture. It also works for
register instructions in a von Neumann architecture, but not for memory instructions, because a data
access would interfere with the fetching of the next instruction. Therefore, a stall cycle must be
introduced for memory instructions, loads as well as stores. We let the stall signal indicate, whether an
instruction fetch or a data access cycle is in progress. In the former case, the address is pcmux, in the
latter it is B + off: (see Fig. 12). The clock frequency had to be reduced from 35 to 25 MHz.

assign stall = stallL | stallM | stallD;
assign stallL = (LDW | STW) & ~stall1;

assign adr = stall ? (B[19:0] + off) : {pcmux, 2'b00};
assign wr = STW & ~stall1;
assign rd = ~wr;
regwr = ccwr | (LDW & ~stall1);

Fig. 12. Stalling memory instructions

There remains the (nasty) problem of how to load a program into the SRAM. The Xilinx loader always
loads a bit-stream into BRAM. In our case this is a boot loader for moving compiled code into the
SRAM. This implies that transfer of control from BRAM to SRAM must occur after the boot loading. Of
course we wish to use the RISC itself to execute the boot loader. For this purpose, we map the BRAM

MOV ADD LDW SUB STW LDW BR

MOV ADD LDW SUB STW LDW

fetch

exec

stall

 21

(2K) onto SRAM, actually to its high end. PMsel determines the memory from which instructions are
read into IR.

The starting address on reset is now changed from 0 to StartAdr. The transfer of control after boot
loading is achieved by a branch to 0.

reg PMsel;

StartAdr = 18'b111111100000000000;
IRBuf <= stall ? IRBuf : codebus;
PMsel <= ~rst | (pcmux[17:11] == 7’b1111111;
IR = PMsel ? pmout : IRBuf;

5.3. Implementing byte-access (RISC-3)
The FPGA’s block RAMs are arrays of words, not bytes. We have therefore refrained from
implementing direct access to bytes. (of course bytes can be extracted and inserted by mask and
rotate instructions). Here we show how to provide byte-access in an efficient way which is possible,
because the SRAM allows to store individual bytes, although basically it is also word-oriented. (In fact
the SRAM of the Spartan board consists of 2 16-bit memory chips, and hence it might be called half-
word oriented). The SRAM provides 4 write-enable signals, one for each byte in a word. By generating
these signals from the low 2 bits of the address, individual bytes can be stored without affecting the
other 3 bytes. Reading of a byte, however, always involves the reading of the word containing it, and
then shifting and masking the byte desired.

Because this scheme is determined by the SRAM used, we place the necessary circuits exclusively
into the environment module as shown below. The only addition to the processor interface is the signal
be (byte enable) derived from the modifier bit v in memory instructions.

For byte-wise reading, multiplexers are inserted into the input path. We rename the IOBuf’s output
from inbus0 to inbus1, and redefine inbus0 as

inbus0[7:0] = (~be | a0) ? inbus1[7:0] : a1 ? inbus1[15:8] : a2 ? inbus1[23:16] : inbus1[31:24];
inbus0[31:8] = ~be ? inbus1[31:8] : 24'b0;

with
a0 = ~adr[1] & ~adr[0];
a1 = ~adr[1] & adr[0];
a2 = adr[1] & ~adr[0];
a3 = adr[1] & adr[0];

For byte-access writing, multiplexers need be inserted in the output path.The IOBuf’s input outbus is
replaced by outbus1, which is defined as:

outbus1[7:0] = outbus[7:0];
outbus1[15:8] = be & a1 ? outbus[7:0] : outbus[15:8];
outbus1[23:16] = be & a2 ? outbus[7:0] : outbus[23:16];
outbus1[31:24] = be & a3 ? outbus[7:0] : outbus[31:24];

The various chip- and byte-enable signals are defined as (see also 5.1.):

SRce0 = be & adr[1];
SRce1 = be & ~adr[1];
SRbe[0] = be & adr[0];
SRbe[1] = be & ~adr[0];
SRbe[2] = SRbe[0];
SRbe[3] = SRbe[1];

5.4. Interrupts

 22

The last facility to be added to the RISC is that for interrupts. It was first introduced in computers
around 1960. The principal motivation was avoiding the need for distinct, small processors to handle
small, peripheral task, such as the acceptance of input data and of buffering them, before the actual
computing process was ready to accept them. Instead, the main process was to be interrupted, i.e. the
processor was to be borrowed (for a short time) to handle the request, and thereafter to be returned to
its interrupted task. Hence, the interrupt facility had a purely economical motivation.

One might assume that in the era of unbounded computing resources those small processess would
no longer have to share a processor, but would be represented by programs on separate, distinct
processors such as microcontrollers. This is partly happening. However, the interrupt is such a
convenient feature for economizing hardware that it continues to persist. It is indeed, as will be seen
shortly, very cheap to implement – at least in its basic form.

One should consider the effects of an interrupt evoked by an external signal as if a procedure call had
been inserted at random in the current instruction sequence. This implies that not only the call
instruction is executed, but also that the entire state of the current computation be preserved and
recovered after ending the interrupt procedure. Different strategies for implementation differ primarily
by the techniques for saving the state. The simplest implementation saves, like a procedure call, only
the current PC (in an extra register), and leaves the rest to the interrupting program, such as the
saving of used registers to software. This is the cheapest solution for hardware, but also the most
time-consuming for software. At the other end of the spectrum lies hardware saving all registers
including stack pointers, or even providing multiple sets of registers for interrupts, letting an interrupt
handler look as a regular procedure. A further sophistication lies in providing several, distinct interrupt
signals, perhaps even with distinct priorities, or even programmable priorities. There is no limit to
complexification.

One addition, however, is mandatory, namely a state register indicating whether or not interrupts are
admitted (intEnb). For the programmer of interest is that we obtain three new instructions, one for
returning from an interrupt routine, and two for setting the enable state. They are all encoded in the
form of branch instructions with u = 0:

Fig. 13. Special instructions for interrupt and trap handling

Following our credo for simplicity we here present a solution requiring the minimal effort on the side of
the hardware. This also lies in accord with the needs for teaching the concept. These are the
declarations of new variables::

input irq0, irq1; interrupt requests
reg intMd, intEnb0, intEnb1; interrupt mode, interrupt enable
reg [21:0] SPC; saved PC on interrupt
wire [17:0] pcmux0;
wire intAck; enabled interrupt request
wire nn, zz, cx, vv; condition codes
wire RTI; return from interrupt instruction

When one of the irq signals becomes high, an interrupt is pending. It causes intAck to become high, if
interrupts are enabled (intEnb), the processor is not currently executing another interrupt handler
(~intMd), and the processor is not stalled. When intAck is high, the current PC is saved in the new

1100 1111 1100

1100 1111

1100 0111

00ee

0100 0000

0001 Rn

Enable/disable int 0

Enable/disable int 1

Return interrupt

1101 cond 0010 dst Trap

 23

SPC register, and pcmux becomes 1, i.e. the next instruction is read from address 4. At the same
time, the condition bits are also saved (in SPC[21:18]), and the processor enters the interrupt mode.

intAck0 = irq0 & intEnb0 & ~intMd & ~stall;
intAck1 = irq1 & intEnb1 & ~intMd & ~stall;
pcmux = ~rst ? 0 : intAck0 ? 1 : intAck1 ? 2 : pcmux0;

N <= nn; Z <= zz; C <= cx; OV <= vv;
SPC <= (intAck0 | intAck1) ? {nn, zz, cx, vv, pcmux0} : SPC;
intMd <= rst & ~RTI & (intAck0 | intAck1 | intMd);

A return from interrupt instruction (RTI) causes the next instruction address to be taken back from
SPC[17:0] and the condition bits from SPC[21:18]. Furthermore, the processor leaves the interrupt
mode.

Fig. 14. Interrupt signals

RTI = p & q & ~u & IR[4];
pcmux0 = stall ? PC : RTI ? SPC[17:0] : ……

nn = RTI ? SPC[21] : ccwr ? aluRes[31] : N;
zz = RTI ? SPC[20] : ccwr ? (aluRes[31:0] == 0) : Z;
cx = RTI ? SPC[19] : (ADD|SUB) ? aluRes[32] : C;
vv = RTI ? SPC[18] : (ADD) ? (sa & ~sb & ~sc | ~sa & sb & sc) :
 (SUB) ? (sa & ~sb & sc | ~sa & sb & ~sc) : OV;

The interrupt mode instruction copies IR[7] into the intEnb register, which is cleared upon reset.

intEnb0 <= ~rst ? 0 : (BR & ~u & IR[6]) ? IR[0] : intEnb0;
intEnb1 <= ~rst ? 0 : (BR & ~u & IR[7]) ? IR[1] : intEnb1;

There is evidently very little additional circuitry due to the interrupt facility. However, this solution
requires that software saves and restored all registers used in an interrupt routine. Note also that the
interrupt routine must reset the external interrupt request. This typically is done by a command to the
respective device, effectively an acknowledge signal.

In order to generate an interrupt signal, the environment is extended as follows. When cnt0 reaches a
limit, cnt1 is incremented and irq is set to 1. This causes an interrupt every millisecond, given a clock
frequency of 25 MHz.

reg irq;
assign limit = (cnt0 == 25000);

always @(posedge clk) begin
 irq <= ~rst | (wr & ioenb& (iowadr == 0)) ? 0 : limit ? 1 : irq;
end

References

1. Xilinx, Spartan-3 Starter kit board user guide
http://www.digilentinc.com/Data/Products/S3BOARD/S3BOARD_RM.pdf

irq

intAck

intMd

RTI

restore PC save PC

 24

2. N. Wirth. Compiler Construction. Addison-Wesley, 1995.

