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Abstract 

1. Introduction 
The idea for this project has two roots. The first was a project to design and implement a small 
processor for use in embedded systems with several interconnected cores. It was called the Tiny 
Register Machine (TRM). The second root is a book written by this author some 30 years ago, and 
revised several times since. Its subject is Compiler Construction. The target for the developed compiler 
is a hypothetical computer. In the early years this computer was a stack architecture, later replaced by 
a RISC architecture. Now the intent is to replace the hypothetical, emulated computer by a real one. 
This idea was made realistic by the advent of programmable hardware components called field 
programmable gate arrays (FPGA). 

The development of this architecture is described in detail in this report. It is intentionally held in a 
tutorial style and should provide the reader with an insight into the basic concepts of processor design. 
In particular, it should connect the subjects of architectural and compiler design, which are so closely 
interconnected. 

We are aware of the fact that “real” processors are far more complex than the one presented here. We 
concentrate on the fundamental concepts rather than on their elaboration. We strive for a fair degree of 
completeness of facilities, but refrain from their “optimization”. In fact, the dominant part of the vast size 
and complexity of modern processors and software is due to speed-up called optimization 
(improvement would be a more honest word). It is the main culprit in obfuscating the basic principles, 
making them hard, if not impossible to study. In this light, the choice of a RISC (Reduced Instruction 
Set Computer) is obvious. 

The use of an FPGA provides a substantial amount of freedom for design. Yet, the hardware designer 
must be much more aware of availability of resources and of limitations than the software developer. 
Also, timing is a concern that usually does not occur in software, but pops up unavoidably in circuit 
design. Nowadays circuits are no longer described in terms of elaborate diagrams, but rather as a 
formal text. This lets circuit and program design appear quite similar. The circuit description language – 
we here use Verilog – appears almost the same as a programming language. But one must be aware 
that differences still exist, the main one being that in software we create mostly sequential processes, 
whereas in hardware everything “runs” concurrently. However, the presence of a language – a textual 
definition – is an enormous advantage over graphical schemata. Even more so are systems (tools) that 
compile such texts into circuits, taking over the arduous task of placing components and connecting 
them (routing). This holds in particular for FPGAs, where components and wires connecting them are 
limited, and routing is a very difficult and time-consuming matter. 

The development of our RISC progresses through several stages. The first is the design of the 
architecture itself, (more or less) independent of subsequent implementation considerations. Then 
follows a first implementation called RISC-0. For this we chose a Harvard Architecture, implying that 
two distinct memories are used for program and for data. For both we use chip-internal memory, so-
called block RAMs. The Harvard architecture allows for a neat separation of the arithmetic from the 
control unit. 

But these blocks of RAM are relatively small (1 - 4K words). The development board used in this 
project, however, provides an FPGA-external Static RAM with a capacity of 1 MByte. In the second 
stage (RISC-1) the BRAM for data is replaced by this SRAM. 
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In the third stage (RISC-2) we switch to a von Neumann Architecture. It uses a single memory for both 
instructions and data. Of course we use the SRAM of stage 1. 

In the last stage (RISC-3) two features are added to round up the development, byte accessing and 
interrupts. (They might be omitted in a course without consequences). 

It follows that RISC-0 and RISC-2 are the corner stones of this project. But we keep in mind that from a 
programmers’ standpoint all four implementations appear identical (with the exception of the features 
added in RISC-3). All four have the same architecture and the same instruction set. 

2. The RISC Architecture 
An architecture describes a computer as seen by the programmer and the compiler designer. It 
specifies the resources, i.e. the registers and memory and defines the instruction set. (possibly 
implying data types). 

Processors consist of two parts, the arithmetic/logic unit (ALU) and the control unit. The former 
performs arithmetic and logical operations, the latter controls the flow of operations. In addition to the 
processor there is memory. Our RISC consists of a memory whose individually addressable elements 
are bytes (8 bits). 

The ALU features a bank of 16 registers with 32 bits. 32-bit quantities are called words. Arithmetic and 
logical operations, represented by instructions, always operate on these registers. Data can be 
transferred between memory and registers by separate load and store instructions. This is an important 
characteristic of RISC architectures, developed between 1975 and 1985. It contrasts with the earlier 
CISC architectures (Complex instruction set): Memory is largely decoupled from the processor. A 
second important characteristic is that every instruction takes one clock cycle for its execution, perhaps 
with the exception of access to slower memory. More about this will be presented later. This single-
cycle rule makes such processors predictable in performance. The number of cycles and the time 
required for executing any instruction sequence is precisely defined. Predictability is essential in all 
real-time applications. 

The core of the data processing unit consisting of ALU and registers is shown in Figure1. Evidently, 
data cycle from registers into the ALU, where an operation is performed, and the result is deposited 
back into a register. 

 
Fig. 1. Processor core with ALU and registers 
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The control unit contains a register holding the instruction currently being under execution. This is 
called the instruction register (IR). It also features a register holding the address of the instruction being 
fetched from program memory. This is traditionally called the program counter (PC).  The control unit 
computes the address of the next instruction. As this is mostly the one in sequence, i.e. with address 
PC+1, the control unit also holds an incrementer. Branch instructions take the next address from the 
instruction register. 

External devices are mapped into the address space of memory. This means that a certain range of 
addresses is reserved for access to input and output devices. 

3. The Instruction Set 
The term “reduced” suggests that keeping the instruction set small is a good concept. But how much 
can one reduce it? Is there a lower limit? Which are its criteria? There is, of course, no clear cut 
measure. An important goal is a certain completeness. An instruction set should make it possible to 
compose any more complex operation out of the basic instructions, The second goal must be 
regularity, straight rules without exceptions. It facilitates description, understanding, and 
implementation enormously. 

The principal enemy of regularity and simplicity is the drive for speed, for efficiency. We place priority 
on a simple, regular design. Improvements to increase speed can be added at a later stage. A sound 
rule to begin is that instructions simple to implement should have priority. Among them are certainly all 
logical operations, and because of their frequency the basic arithmetic operations such as addition and 
subtraction. 

The RISC architecture divides instructions into three classes, namely (1) arithmetic and logic 
instructions operating on registers, (2) operations to transfer data between registers and memory, and 
(3) control (branch) instructions. 

3.1. Register instructions 
We follow the established convention to provide instructions with 3 register numbers, two specifying 
the operands (sources), one the result (destination). Thus we obtain a 3-address computer. It gives 
compilers the largest degree of freedom to allocate registers for optimal efficiency. Logical operations 
are the conventional AND, OR, XOR. The arithmetic operations are the four basic operations of 
addition, subtraction, multiplication and division. The inclusion of the latter two is to some degree 
questionable. They are considered basic in mathematics, although they can be constructed out of 
addition or subtraction. Their complexity is indeed of a higher order. This must be paid by higher “cost”, 
either in time or circuitry. 

Furthermore, we include a set of shift instructions, moving bits horizontally. In fact, a single one, 
namely rotation would suffice. Rotation is the best choice because it loses no information, and thus all 
other can be constructed out of it. However, we also provide left shift (LSL) and (arithmetic) right shift 
(ASR). The former feeds zeroes in at the low end, the latter replicates the top bit at the right end. The 
shift count can be any number between 0 and 31. 

All 16 register instructions use the same two forms. In form F0, both operands are registers. In format 
F1 one operand is a register, the other is a constant held in the instruction itself. In format F1,  

The complete set of register instructions is shown the following Table 1 in an assembler-like form. R.a 
is the destination register, and R.b is the first operand. The second operand is either register R.c, or  
the literal ("immediate") im. In this case, the modifier bit v determines how the 16-bit constant im is 
extended into a 32-bit value. The two forms of instructions are encoded as shown in Fig. 2  n stands for 
either R.c or im. 

0 MOV a, n R.a := n 
1 LSL a, b, n R.a := R.b ←  n (shift left by n bits) 
2 ASR a, b, n R.a := R.b → n (shift right by n bits with sign extension) 
3 ROR a, b, n R.a := R.b rot n (rotate right by n bits) 
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4 AND a, b, n R.a := R.b & n logical operations 
5 ANN a, b, n R.a := R.b & ~n 
6 IOR a, b, n R.a := R.b or n 
7 XOR a, b, n R.a := R.b xor n 
8 ADD a, b, n R.a := R.b + n integer arithmetic 
9 SUB a, b, n R.a := R.b – n 
10 MUL a, b, n R.a := R.a х n 
11 DIV a, b, n R.a := R.b div n 

12 FAD a, b, c R.a := R.b + R.c floating-point arithmetic 
13 FSB a, b, c R.a := R.b – R.c 
14 FML a, b, c R.a := R.a х R.c 
15 FDV a, b, c R.a := R.b / R.c 

v = 0 extension of im with 16 zero bits 
v = 1 extension of im with 16 one bits 

Table 1. Register instructions 

 
Fig.2.  Formats F0 and F1. for register instructions 

All register instructions (with the exception of multiplication and division) have side effects on the four 
single-bit condition registers, namely 

N := bit 31 of result. Hence, N indicates whether the result is negative. 
Z := all bits of result zero.  Z indicates whether the result is zero. 
C := carry out bit. (For addition and subtraction only). 
V := overflow.  (For addition and subtraction only) 

These four condition registers are tested by branch instructions. The DIV instruction deposits the 
remainder in an auxiliary register H. 

Register instructions contain two modifier bits u and v. The instruction MOV with u set to 1 shifts the 
immediate value im by 16 bits to the left. Instructions ADD and SUB with the modifier bit u set to 1 add 
(subtract) the carry bit C, and the MUL instruction with u set to 1 considers the operands as unsigned 
numbers, yielding a 64-bit unsigned product. 

3.2. Memory instructions 
There are only two memory instructions, namely load and store. They specify a destination register R.a 
for load, or a source register for store. The address in memory is the sum of register R.b and a 20-bit 
offset. The format is shown in Figure 3. 

LD a, b, off R.a := Mem[R.b + off] 
ST a, b, off Mem[R.b + off] := R.a 

 
Fig. 3. Format F2 for memory instructions 
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The modifier bits have the following significance: 

u = 0  load,  u = 1  store 
v = 0: word,  v = 1: byte   (implemented on RISC-3 only) 

3.3. Branch instructions 
Branch instructions are used to break the sequence of instructions. The next instruction is designated 
either by a 24-bit signed offset, or by the value of a register, depending on the modifier bit u. It 
indicates the length of the jump forward or backward (PC-relative addressing). This offset is in words, 
not bytes, as instructions are always one word long. 

Bcond off 

u = 0 PC := R.c u = 1 PC := PC+1+off 
v = 0 no link  v = 1 R15 := PC+1 

The modifier v determines, whether the current value of PC be stored in register R15 (the link register). 
This facility is used for calls to procedures. The value stored is then the return address. The format is 
shown in Fig. 4. 

 
Fig. 4. Format F3 of branch instructions 

The following conditions are available: 

code cond condition  code cond condition   

0000 MI negative (minus)  N 1000 PL positive (plus) ~N 
0001 EQ equal (zero)  Z 1001 NE positive (plus) ~Z 
0010 CS carry set  C 1010 CC carry clear ~C 
0011 VS overflow set  V 1011 VC overflow clear ~V 
0100 LS less or same ~C|Z 1100 HI high ~(~C}Z) 
0101 LT less than N≠V 1101 GE greater or equal ~(N≠V) 
0110 LE less or equal (N≠V)|Z 1110 GT greater than ~((N≠V)|Z) 
0111  true T 1111  false F 

4. Implementing a Harvard Architecture (RISC-0) 
The building of circuits involves physical components, such as gates and registers, and wires 
connecting them. The use of a modern FPGA on a chip facilitates this task tremendously. There is no 
need to select component chips with registers, mutiplexers, or decoders, and no need to hard-wire 
them with soldering iron or wire-wrap gun. Instead, the circuit description is fed to a tool consisting of a 
synthesizer, a placer (selecting appropriate elements from the ones available on-chip), and a router 
(using the available wires to connect them). 

Although this scheme has simplified hardware design drastically, there still exist the limitations of 
available components and of routing resources. If a design becomes too complex, or too large, the tool 
may not be able to perform its task Therefore, we have a strong incentive to keep our design 
reasonably simple and well structured. 

In addition and in contrast to software design, there exists the consideration of timing. Signals 
propagate with finite speed. Each gate introduces a certain delay. We must keep path lengths, the 
number of gates a signal passes between its origin register and its destination register, small. The 
timing considerations are greatly simplified, if we adhere to synchronous design. This implies that all 
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registers are run by the same clock. The FPGA provides special wiring for clock signals in order to 
keep clock skew limited and ignorable. 

We describe the circuit by a program text in the HDL Verilog, and we stick to the following scheme, 
where a module consists of 4 parts: 

1. The header with the list of input and output signals (parameters). 
2. The declaration part, introducing the names of signals (wires) and registers. 
3. The assignments of (Boolean) values to signals (wires)..They have the form 

assign s = expression; 

4. The assignments to registers. They have the form 

R <= expression; 

and occur under the heading 

always @ (posedge clk) begin ….. end 

where clk is the global clock signal. 

There are two input signals occurring in the header of every module, namely clk and rst. The latter is a 
negative reset signal (in our case activated by a push button). 

The RISC system consists of several modules. The principal module is called RISC0, and it 
implements the processor. There are two submodules implementing a multiplier and a divider. There is 
also a module called RISC0Top, representing the processor’s “environment”. It is a Verilog rule that 
only a top module can import off-chip signals. This module contains the connections to external 
devices. They include an RS-232 transmitter and an RS-232 receiver, representing a serial line. The 
module also contains the connections to a set of 8 LEDs and to 8 switches. This configuration is shown 
in Figure 5. 

 
Fig. 5. Block diagram of the RISC-0 configuration 

The header of module RISC0 lists its parameters, signals to and from the “environment”: 

input clk, rst, 
input [31:0] inbus, codebus, 
output [11:0] adr, 
output rd, wr, 
output [31:0] outbus 

4.1. The computation unit (ALU) 

RISC0Top 
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As mentioned earlier, the processor is divided into two parts, the computation unit and the control unit. 
In the block diagram of Figure 6 the computation unit is to the left, the control unit to the right, and it is 
evident that they are connected by a few wires only. 

The heart of the computation unit is the bank of registers, each of the 16 registers with 32 bits. From 
the description of the architecture it is evident that there must be 3 output ports corresponding to the 
register numbers a, b, and c (fields in the register instructions)., plus one output port addressed by a. 
Here we consider the register bank as a “black box” with the following input and output signals. We will 
return to further details of implementation later in this text. 

A data output port  (32 bit) 
B data output port  (32 bit) 
C0 data output port  (32 bit) 
D data input port  (32 bit) 
ira0 address of ports A and D  (4 bit) 
irb address of port B  (4 bit) 
irc address of port C0  (4 bit) 
clk clock 
regwr write enable 
 

 
Fig.6. Block diagram of computation unit 

Before proceeding, we postulate the following auxiliary signals derived from the instruction register IR, 
representing instruction fields and their decoding (see instruction formats in Ch. 3). 

IR = pmout;   instruction from program memory 
p = IR[31];    instruction fields 
q = IR[30]; 
u = IR[29]; 
v = IR[28]; 
w = IR[16]; 
cc  = IR[26:24]; 
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ira = IR[27:24]; 
irb = IR[23:20]; 
op  = IR[19:16]; 
irc = IR[3:0]; 
imm = IR[15:0]; 
off = IR[19:0]; 

MOV = ~p & (op == 0);   decode signals 
LSL = ~p & (op == 1); 
ASR = ~p & (op == 2); 
ROR = ~p & (op == 3); 
AND = ~p & (op == 4); 
ANN = ~p & (op == 5); 
IOR  = ~p & (op == 6); 
XOR = ~p & (op == 7); 
ADD = ~p & (op == 8); 
SUB = ~p & (op == 9); 
MUL = ~p & (op == 10); 
DIV = ~p & (op == 11); 

LDW = p & ~q & ~u; 
STW = p & ~q & u; 
BR  = p & q; 

From the block diagram of Fig. 6 we now derive the following expressions for further signals: 

ira0 = (BR) ? 15 : ira; return address of BL to R15 
C1 = ~q ? C0 : {{16{v}}, imm}; 

aluRes = 
  MOV ? C1 : 
  LSL ? t3 : left shifter output 
  ASR ? s3 : right shifter output 
  ROR ? s3 : right shifter output 
  AND ? B & C1 : 
  ANN ? B & ~C1 : 
  IOR  ? B | C1 : 
  XOR ? B ^ C1 : 
  ADD ? B + C1 + (u & C) : 
  SUB ? B - C1 – (u & C) : 
  MUL ? product[31:0] : multiplier output 
  DIV ? quotient : 0; divider output 

regmux =  register input D 
  (LDW & ~ioenb) ? dmout from memory : 
  (LDW & ioenb) ? inbus from input bus : 
  (BR & v) ? {18'b0, nxpc, 2'b0} : aluRes return address from control unit; 

In most instructions, the result regmux is stored in a register. The exceptions are: 

Branch instructions, unless the return address is to be saved (BR & ~u) 
Branch instructions whose condition is not met  (BR & ~cond) 
Store instructions 
Stalls (discussed later) 

The register set is represented by an array of 16 registers: 

reg [31:0] R [0:15] 

Writing to registers is controlled by the signal regwr, defined as follows: 

regwr = (~p & ~stall) | (LDW & ~stall & ~stall1) (BR & cond & v); 
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In addition to the data registers, four single-bit registers are provided to hold some predicates of the 
computed result. They are traditionally called condition codes, and they are used (tested) by branch 
instructions. These registers are 

N <= aluRes[31] result is negative 
Z <= (aluRes[31:0] == 0) result is zero 
C <= aluRes[32] carry out 
OV <= aluRes[32] ^ aluRes[31] overflow 

N and Z are set by all register operations, C and V by additions and subtractions only. Sums and 
differences are 33 bit wide, Bit 32 is the carry out (overflow for unsigned arithmetic). 

Parallel to the path from register output to register input through the ALU lies the path through two 
shifters, one for left, one for right shifts. Shifters are, like circuits for logical and arithmetic operations, 
entirely combinational circuits. They consist of multiplexers only. The left shift (LSL) feeds zero bits to 
the right. 

A basic element on our FPGA are “lookup tables” with 4 inputs and a single output resulting from any 
function of the inputs. Hence, a 4-input multiplexer is the preferred element. In order to be able to shift 
by any amount between 0 and 31, three stages are required. The first shifts by 0, 1, 2, or 3 bits, the 
second by 0, 4, 8, or 12 bits, and the third by 0 or 16 bits. The following signals are involved: 

wire [31:0]  t1, t2,  t3; 
wire [1:0] sc1, sc0;  // shift counts 

The shifter input is B, its output is t3. The intermediate outputs between multiplexers are t1 and t2. The 
shift count is split into 

assign sc0 = C1[1:0]; 
assign sc1 = C1[3:2]; 

assign t1 = (sc0 == 3) ? {B[28:0], 3'b0} :  // shifter for LSL 
    (sc0 == 2) ? {B[29:0], 2'b0} : 
    (sc0 == 1) ? {B[30:0], 1'b0} : B; 
assign t2 = (sc1 == 3) ? {t1[19:0], 12'b0} : 
    (sc1 == 2) ? {t1[23:0], 8'b0} : 
    (sc1 == 1) ? {t1[27:0], 4'b0} : t1; 
assign t3 = C1[4] ? {t2[15:0], 16'b0} : t2; 

The right shifter is quite similar. It implements both right shift and right rotation (determined by u). In the 
former case, bits shifted in at the left end are replicas of the leftmost (sign) bit B[31], whereas for 
rotation they are taken from the right end. 

wire [31:0] s1, s2, s3; 

assign s1 = (sc0 == 3) ? {(w ? B[2:0] : {3{B[31]}}), B[31:3]} :  // shifter for ASR and ROR 
    (sc0 == 2) ? {(w ? B[1:0] : {2{B[31]}}), B[31:2]} : 
    (sc0 == 1) ? {(w ? B[0] : B[31]), B[31:1]} : B; 
assign s2 = (sc1 == 3) ? {(w ? s1[11:0] : {12{s1[31]}}), s1[31:12]} : 
    (sc1 == 2) ? {(w ? s1[7:0] : {8{s1[31]}}), s1[31:8]} : 
    (sc1 == 1) ? {(w ? s1[3:0] : {4{s1[31]}}), s1[31:4]} : s1; 
assign s3 = C1[4] ? {(w ? s2[15:0] : {16{s2[31]}}), s2[31:16]} : s2; 

And this concludes the explanation of the computation unit of the processor. 

4.2. The data memory 
The data memory DM is represented in our case by a so-called Block RAM, a facility provided by the 
FPGA used. (Its name is dbram32), and it has the following signals: 

wire [31:0] dmin, dmout; input and output ports 
wire dmwr; write enable 
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wire [13:0] dmadr; memory address 

dmin = A; 
dmwr = STW & ~stall; 
dmadr = B[13:0] + off[13:0]; 

The memory is configurable as a 2K (or 4K) block. Its elements are 32-bit words. As the RISC uses 
byte addresses, the address fed to the RAM is actually dmadr[12:2], and only words, not bytes can be 
accessed.. Address bits 0 and 1 are ignored. (The stall signal will be explained later). 

4.3. The control unit 
The control unit determines the sequence of executed instructions. It contains two registers, the 
program counter PC holding the address of the current instruction, and the current instruction register 
IR holding the instruction currently being interpreted. Instructions are obtained from the program 
memory PM, also a Block RAM with 2K words and the signals 

wire [31:0] pmout; output port 
wire [11:0] pcmux; memory address 

The principal task of this unit is to generate the address of the next instruction. There are essentially 
only four cases: 

0. Zero on reset. 
1. The next instructions address is the current one’s (PC) plus 1 
2. It is given by the instruction explicitly. (Branch instructions). 
3. It is taken from a data register. (This is used for returning from procedures). 

In a Harvard architecture, computational and control units operate simultaneously. In each clock cycle, 
the control unit fetches the next instruction for the program memory into the instruction register IR, and 
the computation unit operates on registers (or on the data memory). As an example the short 
instruction sequence 

0 ADD R0 R0 2 
1 SUB R0 R0 1 
2 B  0 

 is traced as follows over 5 clock cycles: 

pcmux IR PC R0 

0 
1 ADD 0 0 
2 SUB 1 2 
0 B 2 1 
1 ADD 0 1 
2 SUB 1 3 

The control unit is quite straight-forward, as show in Figure 7, and defined by the following 
expressions: 

IR = pmout; 
nxpc = PC + 1; 
pcmux = (~rst) ? 0 : 
  (stall) ? PC :  // do not advance 
  (BR & cond & u) ? off[11:0] + nxpc : 
  (BR & cond & ~u) ? C0[13:2]  :  nxpc; 

always @ (posedge clk)  PC <= pcmux; end 

Here we notice that all branch instructions are subject to a condition. The condition is specified by the 
condition field of the instruction and is a logical function of the 4 condition registers N, Z, C, V. The 
signal cond is defined as 
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cond = IR[27] ^ IR[27] inverts sense 
  ((cc == 0) & N | MI, PL 
   (cc == 1) & Z | EQ, NE 
   (cc == 2) & C | CS, CC 
   (cc == 3) & OV | VS, VC 
   (cc == 4) & (C|Z) | LS, HI 
   (cc == 5) & S | LT, GE 
   (cc == 6) & (S|Z) | LE, GT 
   (cc == 7)); T, F 

 
Fig. 7. The control unit 

The memory block of the FPGA already contains an output register. For this reason IR is actually 
declared as a wire, but not as a register (which is represented by pmout). Note that the memory has clk 
as an input signal. This seemingly trivial and incidental detail has yet another consequence. 

As the address signal travels through the decoder and the selected value proceeds to this output 
register, the read value is actually available only in the next cycle after the address was applied to the 
memory. This implies that actually the reading of a value takes 2 cycles. This contradicts the rule that 
in RISCs every instruction be executed in a single cycle. However, memory access is considered as a 
special case, and provisions must be made to allow it to take longer. 

The device to solve this problem is stalling the processor, i.e. to retain it in the same state over 2 or 
more cycles. This is achieved by simply generating a stall signal which, if active, feeds PC itself to the 
multiplxer. In our case, this signal must arise when a LD instruction is present, and it must remain 
active for exactly one clock period. This is achieved by the following circuit with signals shown in Figure 
8:: 

reg stall1; 
wire stall, stallL; 

stall = stallL; 
stallL = LDW & ~stall1; 
stall1 <= stallL; 

This circuit actually represents a very simple state machine. 
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Fig. 8. Stall generation for memory access 

4.4. The multiplier 
Multiplication is an inherently more complex operation than addition and subtraction. After all, 
multiplication can be composed (of a sequence) of additions. By not vice-versa. There are many 
methods to implement multiplication, all – of course – based on the same concept of a series of 
additions. They show the fundamental problem of trade-off between time and space (circuitry). Some 
solutions operate with a minimum of additional circuitry – actually without – but sacrifice speed. These 
are the implementations in software. Naturally, they perform the necessary additions in sequence. The 
partial sums are stored in variables. At the other end of the spectrum lie solutions which use a multitude 
of adders operating concurrently (in parallel). They are fast, but the amount of required circuitry is high. 

And, of course, there are solutions that lie in between these extremes. We here present such a middle 
solution. It needs a single adder only and performs additions in sequence, with partial sums stored in a 
special register. The sequence of additions is triggered by a single multiply instruction, which makes 
this solution still faster than a pure software solution, which would typically be presented as a 
procedure. 

Let us briefly recapitulate the basics of a multiplication p := x × y. Here p is called the product, x the 
multiplier, and y the multiplicand. Let x and y be unsigned integers. Consider x in binary form. 

x  =  x31×231  +  x30×230  + … +  x1×21  +  x0×20 

We obtain the product by a sequence of 32 additions, each term of the form xk×2k×y, i.e. of y left shifted 
by k positions multiplied by xk. Since xk is either 0 or 1, the product is either 0 or y (shifted). 
Multiplication is thus performed by an adder and a selector. 

The selector is controlled by xk, a bit of the multiplier. Instead of selecting this bit among x0 … x31, we 
right shift x by one bit in each step. Then the selection is always according to x0. This suggests that 
instead of shifting y to the left in each step, we keep y in the same position and shift the partial sum p to 
the right. We notice that the size of x decreases by 1 in each step, whereas the size of p increases by 
1. This suggests to pack p and x into a single register pair <B,A> with a shifting border line. At the end, 
it contains the 64-bit product p = x × y. 

p = {B[31:0], A{31:[32-k]}, x = A[31-k:0] k = 0 … 31 

The multiplier is controlled by a rudimentary state machine S, actually a simple 5-bit counter running 
from 0 to 31. The multiplier is shown schematically in Figure 9. 

The multiplier interprets its operands as signed (u = 0) or unsigned (u = 1) integers. The difference 
between unsigned and signed representation is that in the former case the first term has a negative 
weight (-x31×231). Therefore, implementation of signed multiplication requires very little change: Term 31 
is subtracted instead of added (see complete program listing below). 

 

LDW 

stallL 

stall1 
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Fig. 9. Schematic of multiplier 

During execution of the 32 add-shift steps the processor must be stalled. The process proceeds and the 
counter S advances as long as the input MUL is active (high). MUL indicates that the current operation 
is a multiplication, and the signal is stable until the processor advances to the next instruction. This 
happens when step 31 is reached: 

stall  =  MUL & ~(S == 31); 
S  <=  MUL ? S+1 : 0; 

 
Fig. 10. Generating stall 

The details of the multiplier are listed below: 

module Multiplier( 
  input CLK, MUL, u, 
  output stall, 
  input [31:0] x, y, 
  output [63:0] z); 
 
reg [4:0] S;    // state 
reg [31:0] B2, A2;  // high and low parts of partial product 
wire [32:0] B0, B00, B01; 
wire [31:0] B1, A0, A1; 
 
assign stall = MUL & ~(S == 31); 
assign B00 = (S == 0) ? 0 : {B2[31] & u, B2}; 
assign B01 = A0[0] ? {y[31] & u, y} : 0; 
assign B0 = ((S == 31) & u) ? B00 - B01 : B00 + B01; 
assign B1 = B0[32:1]; 
assign A0 = (S == 0) ? x : A2; 
assign A1 = {B0[0], A0[31:1]}; 
assign z = {B1, A1}; 
 
always @ (posedge(CLK)) begin 
  B2 <= B1; A2 <= A1; 
  S <= MUL ? S+1 : 0; 
end 
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endmodule 

Implementing multiplication in hardware made the operation about 30 times faster than its solution by 
software. A significant factor! As multiplication is a relatively rare operation – at least in comparison with 
addition and subtraction – early RISC designs (MIPS, SPARC, ARM) refrained from its full 
implementation in hardware. Instead, an instruction called multiply step was provided, performing a 
single add-shift step. A multiplication was then programmed by a sequence of 32 step instructions, 
typically provided as a subroutine. 

4.5. The divider 
Division is similar to multiplication in structure, but even slightly more complicated. We present its 
implementation by a sequence of 32 shift-subtract steps, the complement of add-shift. We here discuss 
division of unsigned integers only. 

q  =  x DIV y r  =  x MOD y 

q is the quotient, r the remainder. These are defined by the equation 

x  =  q×y + r with 0 ≤ r < y 

Both q and r are held in registers. Initially we set r to x, the dividend, and then subtract multiples of y 
(the divisor) from it, each time checking that the result is not negative. The shift-subtract step is 

r := 2*r; q := 2*q; 
IF r – y >= 0 THEN r := r – y END 

Initially, r may be a 64-bit value; its size decreases by 1 in each step. q is initially 0, and its size 
increases by 1 in each step, suggesting to use a single double register with shifting border. This is the 
same as in multiplication, except that the shift is to the left. 

 
Fig. 11. Schematic of divider 

Stall generation is the same as for the multiplier. Further details are shown in the subsequent program 
listing. 

module Divider( 
  input clk, DIV, 
  output stall, 
  input [31:0] x, y, 
  output [31:0] quot, rem); 
 
reg [4:0] S;  // state 
reg [31:0] r3, q2; 
wire [31:0] r0, r1, r2, q0, q1, d; 
 
assign stall = DIV & ~(S == 31); 
assign r0 = (S == 0) ? 0 : r3; 

S 
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assign d = r1 - y; 
assign r1 = {r0[30:0], q0[31]}; 
assign r2 = d[31] ? r1 : d; 
assign q0 = (S == 0) ? x : q2; 
assign q1 = {q0[30:0], ~d[31]}; 
assign rem = r2; 
assign quot = q1; 
 
always @ (posedge(clk)) begin 
  r3 <= r2; q2 <= q1; 
  S <= DIV ? S+1 : 0; 
end 
endmodule 
 

4.6. The environment 
The RISC-0 processor module is imported by module RISC0Top, which thereby represents the 
processor’s environment. Apart from providing clock and reset signals, it connects various devices with 
the processor’s input and output busses, and selects them according to the i/o address. These devices 
are 

0. A counter incremented every millisecond  (adr = 0) 
1. A set of 8 dip switches  (adr = 4) 
2. A set of 8 light emitting diodes (LED)  (adr = 4) 
3. An RS-232 receiver (serial data line)  (adr = 8, 12) 
4. An RS-232 transmitter  (adr = 8, 12) 

The RS-232 receiver and transmitter are described in subsequent chapters, the top module itself is 
listed here with the omission of clock generation). The clock frequency is 35 MHz. The signals in its 
heading refer to off-chip components (see also Fig. 5).. 

module RISC0Top( 
  input CLK50M, 
  input rstIn, 
  input RxD, 
  input [7:0] swi, 
  output TxD, 
  output [7:0] leds); 
   
wire clk, clkLocked; 
reg rst; 
 
wire[5:0] ioadr; 
wire [3:0] iowadr; 
wire iowr; 
wire[31:0] inbus, outbus; 
 
wire [7:0] dataTx, dataRx; 
wire rdyRx, doneRx, startTx, rdyTx; 
wire limit;  // of cnt0 
 
reg [7:0] Lreg; 
reg [15:0] cnt0; 
reg [31:0] cnt1; // milliseconds 
 
RISC0 riscx(.clk(clk), .rst(rst), 
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   .iord(iord), .iowr(iowr), .ioadr(ioadr), .inbus(inbus), .outbus(outbus)); 
    
RS232R receiver(.clk(clk), .rst(rst), .RxD(RxD), .done(doneRx), .data(dataRx), .rdy(rdyRx)); 
RS232T transmitter(.clk(clk), .rst(rst), .start(startTx), .data(dataTx), .TxD(TxD), .rdy(rdyTx)); 
 
assign iowadr = ioadr[5:2]; 
assign inbus = (iowadr == 0) ? cnt1 : 
    (iowadr == 1) ? swi : 
    (iowadr == 2) ? {24'b0, dataRx} : 
    (iowadr == 3) ? {30'b0, rdyTx, rdyRx} : 0; 
     
assign dataTx = outbus[7:0]; 
assign startTx = iowr & (iowadr == 2); 
assign doneRx = iord & (iowadr == 2); 
assign limit = (cnt0 == 35000); 
assign leds = Lreg; 
 
always @(posedge clk)  
begin 
  rst <= ~rstIn & clkLocked; 
  Lreg <= ~rst ? 0 : (iowr & (iowadr == 1)) ? outbus[7:0] : Lreg; 
  cnt0 <= limit ? 0 : cnt0 + 1; 
  cnt1 <= limit ? cnt1 + 1 : cnt1; 
end 
endmodule 

4.7. The RS-232 transmitter 
RS-232 is an old standard for serial data transmission. We chose to describe it here because of its 
inherent simplicity. The data are transmitted in packets of a fixed length, here of length 8, i.e. byte-wise. 
Bytes are transmitted asynchronously. Their beginning is marked by a start-bit, and at the end a stop-bit 
is appended. Hence, a packet is 10 bits long (see Fig. 10). Within a packet, transmission is 
synchronous, i.e. with a fixed clock rate, on which transmitter and receiver agree. The standard defines 
several packet lengths and many clock rates. Here we use 19200 bit/s. 

 
Fig. 10. RS-232 packet format 

The input signal start triggers the state machine by setting register run. The transmitter has 2 counters 
and a shift register. Counter tick runs from 0 to 1823, yielding a frequency of .35’000 / 1823 = 19.2 KHz, 
the transmission rate for bits. The signal endtick advances counter bitcnt, running from 0 to 9 (the 
number of bits in a packet). Signal endbit resets run and the counter to 0. Signal rdy indicates whether 
or not a next byte can be loaded and sent. 

module RS232T( 
    input clk, rst, 
    input start, // request to accept and send a byte 
    input [7:0] data, 
    output rdy,   // status 
    output TxD);  // serial data 
 

start bit stop bit
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wire endtick, endbit; 
reg run; 
reg [11:0] tick; 
reg [3:0] bitcnt; 
reg [8:0] shreg; 
 
assign endtick = tick == 1823; 
assign endbit = bitcnt == 9; 
assign rdy = ~run; 
assign TxD = shreg[0]; 
 
always @ (posedge clk) begin 
  run <= (~rst | endtick & endbit) ? 0 : start ? 1 : run; 
  tick <= (run & ~endtick) ? tick + 1 : 0; 
  bitcnt <= (endtick & ~endbit) ? bitcnt + 1 : 
    (endtick & endbit) ? 0 : bitcnt; 
  shreg <= (~rst) ? 1 : start ? {data, 1'b0} : 
    endtick ? {1'b1, shreg[8:1]} : shreg; 
end 
endmodule 

4.8. The RS-232 receiver 
The receiver is structured very similarly with 2 counters and a shift register. The state machine is 
triggered by an incoming start bit at RxD. The state rdy is set when the last data bit has been received, 
and it is reset by the done signal, generated when reading a byte. The line RxD is sampled in the 
middle of the bit period rather than at the end, namely when midtick = endtick/2. 

module RS232R( 
    input clk, rst, 
    input done,   // "byte has been read" 
    input RxD, 
    output rdy, 
    output [7:0] data); 
 
wire endtick, midtick; 
reg run, stat; 
reg [11:0] tick; 
reg [3:0] bitcnt; 
reg [7:0] shreg; 
 
assign endtick = tick == 1823; 
assign midtick = tick == 911; 
assign endbit = bitcnt == 8; 
assign data = shreg; 
assign rdy = stat; 
 
always @ (posedge clk) begin 
  run <= (~RxD) ? 1 : (~rst | endtick & endbit) ? 0 : run; 
  tick <= (run & ~endtick) ? tick + 1 : 0; 
  bitcnt <= (endtick & ~endbit) ? bitcnt + 1 : 
    (endtick & endbit) ? 0 : bitcnt; 
  shreg <= midtick ? {RxD, shreg[7:1]} : shreg; 
  stat <= (endtick & endbit) ? 1 : (~rst | done) ? 0 : stat; 
end  
endmodule 
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5. Implementing a von Neumann Architecture 
The presented Harvard Architecture uses separate memories for program and data. The advantage is 
that instruction fetch and data execution can proceed concurrently. It was the revolutionary idea of 
John von Neumann to merge the two. This made it possible to treat program code as data and to 
perform operations on it. This was, for example, used for adding an array of numbers stored in 
consecutive memory cells, typically performed by a tight program loop. Before each iteration, the 
address of the instruction fetching the value to be added is incremented by 1. 

This trick was made redundant by the later addition of index registers. Now computed values would 
automatically be added to the constant in the instruction to form the effective address. In general, 
modification of program code during execution proved to be a technique loaded with pitfalls, and it is 
now virtually extinct. However, on a larger scale, loading of a (new) program is also based on von 
Neumann’s concept of shared program and data memory, a feature without which computers are 
unthinkable. Yet, the Harvard architecture is still used in applications, where the computer always 
executes the same program. This is mostly the case in embedded applications for sensing data or 
controlling machinery. Its advantage is a gain in speed, because program and data memories are 
accessed concurrently. 

5.1. Using the large memory  (RISC-1) 
Before proceeding to a conversion of our RISC to the von Neumenn scheme, we show the 
replacement of the small 2K Block-RAM for data storage by the large 1 MByte SRAM. This large 
memory is not part of the FPGA chip, but resides outside the FPGA on the Spartan-3 board. This 
necessitates that also the environment of the RISC be adapted. We start by showing the changes 
necessary in the processor circuit, rather than re-listing the entire circuit, and we start with the 
processor itself. 

First of all, the address signals are widened from 12 to 20 bits, the output adr is widened from 5 to 20 
bits. 

output [19:0] adr; 
adr = B[19:0] + off; 

The data BRAM dm is removed, and with it the following signals: 

dmadr, dmwr, dmin, dmout, ioenb 

Connection to the SRAM is through the module’s interface (header), and thus the separation of 
memory access and external device access is made in the environment (RISC1Top) rather than the 
processor module. The signals iowr and iord are now simply wr, rd. 

So far, the changes are all removals resulting in simplifications. Memory access will now occur via the 
environment like access to external devices, and the selector between memory and devices is 
therefore moved to the environment. Hence, it is the environment that receives the extensions. This is 
so, because the SRAM is external to the FPGA, and access via the FPGA’s pins can only be specified 
in a top module. They appear in its parameter list: 

module RISC1Top( … 
  output SRce0, SRce1, SRwe, SRoe, 
  output [3:0] SRbe, 
  output [19:0] SRadr, 
  inout [31:0] SRdat); 

The new declarations are 

wire[19:0] adr; 
wire [17:0] iowadr; // word address 
wire rd, wr, ioenb; 
wire[31:0] inbus, inbus0, outbus; 

RISC1 riscx(.clk(clk), .rst(rst), .rd(rd), .wr(wr),.adr(adr), .inbus(inbus), .outbus(outbus)); 
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The new signals (wires) obtain the following values: 

assign iowadr = adr[5:2]; 
assign ioenb = (adr[19:6] == 14'b11111111111111); 
assign inbus = ~ioenb ? inbus0 : 
   ((iowadr == 0) ? cnt1 : 
    (iowadr == 1) ? swi : 
    (iowadr == 2) ? {24'b0, dataRx} : 
    (iowadr == 3) ? {30'b0, rdyTx, rdyRx} : 0); 

assign SRce0 = 1'b0; 
assign SRce1 = 1'b0; 
assign SRwe = ~wr | clk; 
assign SRoe = ~rd; 
assign SRbe = 4'b0; 
assign SRadr = adr[19:2]; 

genvar i; 
generate // tri-state buffer for SRAM 
  for (i = 0; i < 32; i = i+1) 
  begin: bufblock 
    IOBUF SRbuf (.I(outbus[i]), .O(inbus0[i]), .IO(SRdat[i]), .T(~wr)); 
  end 
endgenerate 

The last paragraph specifies the tri-state buffer SRbuf. It is required, because the SRAM is connected 
with the FPGA by a single, bi-directional bus SRdat. The circuits are shown schematically in Fig. 11. 

  
Fig. 11. Connections between processor and SRAM 

The write strobe wr determines the direction of the tri-state buffer. An absolutely essential detail is that 
the write strobe be ored with the clock signal (~wr | clk). This is to activate writing only in the second 
half of the clock period. The SRAM is a combinational circuit, and writing must wait until the address 
lines are stable, which is the case in the second half of the cycle. The various enable signals ce0, ce1, 
be are all active (low). (Note that like in RISC0 we deal with word transfers only, without byte 
selections. The least 2 address bits are ignored) 

As an aside, we note that the SRAM is fast enough and is without a register at data output. This 
makes a stall cycle unnecessary, again simplifying the processor. The clock rate is 35 MHz. 

5.2. Using SRAM for program and data (RISC-2) 
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We are now in a position to unite program and data memories following the concept of von Neumann. 
There is practically no change in the top module, except that inbus0 is also brought to the interface. It 
lets instructions bypass the multiplexer for input from external devices. Let us consider the evolution of 
the processor. 

First we note the widening of PC (and pcmux and nxpc) from 12 to 18 bits. Because instructions are 
always 4 bytes long, their address is always a multiple of 4. Hence, the address path is not 20 (as 
would be needed for 1 MB), but only 18 bits wide. This concerns the declarations 

output [19:0] adr; 
reg [17:0] PC; 
wire [17:0] pcmux, nxpc; 

In addition, the following changes are necessary: 

regmux = ….. (BR & v) ? {12'b0, nxpc, 2'b0} : aluRes; 
pcmux = ….. (BR & cond & ~u) ? C0[19:2] : nxpc; 

When using the on-chip block RAM for program memory, the instruction register is contained within 
the RAM. Its output pmout is a register. This is not so for the SRAM, and therefore a register has to be 
declared explicitly. We call it IRBuf: 

reg [31:0] IRBuf; 
wire [31:0] IR; 
  IR = IRBuf; 
  IRBuf <= codebus; 

But this is only part of the story. We need to review the entire fetch/execute mechanism. Every 
instruction is first fetched from memory into the instruction register. It is interpreted (executed) in the 
next cycle. In order to double speed, the instruction flow is pipelined: While an instruction is executed, 
the next instruction is fetched. This works fine in the case of the Harvard architecture. It also works for 
register instructions in a von Neumann architecture, but not for memory instructions, because a data 
access would interfere with the fetching of the next instruction. Therefore, a stall cycle must be 
introduced for memory instructions, loads as well as stores. We let the stall signal indicate, whether an 
instruction fetch or a data access cycle is in progress. In the former case, the address is pcmux, in the 
latter it is B + off: (see Fig. 12). The clock frequency had to be reduced from 35 to 25 MHz. 

assign stall = stallL | stallM | stallD; 
assign stallL = (LDW | STW) & ~stall1; 

assign adr = stall ? (B[19:0] + off) : {pcmux, 2'b00}; 
assign wr = STW & ~stall1; 
assign rd = ~wr; 
regwr = ccwr | (LDW & ~stall1); 

 
Fig. 12. Stalling memory instructions 

There remains the (nasty) problem of how to load a program into the SRAM. The Xilinx loader always 
loads a bit-stream into BRAM. In our case this is a boot loader for moving compiled code into the 
SRAM. This implies that transfer of control from BRAM to SRAM must occur after the boot loading. Of 
course we wish to use the RISC itself to execute the boot loader. For this purpose, we map the BRAM 

MOV  ADD   LDW        SUB   STW         LDW        BR   

MOV  ADD   LDW        SUB   STW         LDW       

fetch 

exec 

stall 
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(2K) onto SRAM, actually to its high end. PMsel determines the memory from which instructions are 
read into IR. 

The starting address on reset is now changed from 0 to StartAdr. The transfer of control after boot 
loading is achieved by a branch to 0. 

reg PMsel; 

StartAdr = 18'b111111100000000000; 
IRBuf <= stall ? IRBuf : codebus; 
PMsel <= ~rst | (pcmux[17:11] == 7’b1111111;  
IR = PMsel ? pmout : IRBuf; 
 
 

5.3. Implementing byte-access (RISC-3) 
The FPGA’s block RAMs are arrays of words, not bytes. We have therefore refrained from 
implementing direct access to bytes. (of course bytes can be extracted and inserted by mask and 
rotate instructions). Here we show how to provide byte-access in an efficient way which is possible, 
because the SRAM allows to store individual bytes, although basically it is also word-oriented. (In fact 
the SRAM of the Spartan board consists of 2 16-bit memory chips, and hence it might be called half-
word oriented). The SRAM provides 4 write-enable signals, one for each byte in a word. By generating 
these signals from the low 2 bits of the address, individual bytes can be stored without affecting the 
other 3 bytes. Reading of a byte, however, always involves the reading of the word containing it, and 
then shifting and masking the byte desired. 

Because this scheme is determined by the SRAM used, we place the necessary circuits exclusively 
into the environment module as shown below. The only addition to the processor interface is the signal 
be (byte enable) derived from the modifier bit v in memory instructions. 

For byte-wise reading, multiplexers are inserted into the input path. We rename the IOBuf’s output 
from inbus0 to inbus1, and redefine inbus0 as 

inbus0[7:0] = (~be | a0) ? inbus1[7:0] : a1 ? inbus1[15:8] : a2 ? inbus1[23:16] : inbus1[31:24]; 
inbus0[31:8] = ~be ? inbus1[31:8] : 24'b0; 

with 
a0 = ~adr[1] & ~adr[0]; 
a1 = ~adr[1] & adr[0]; 
a2 = adr[1] & ~adr[0]; 
a3 = adr[1] & adr[0]; 

For byte-access writing, multiplexers need be inserted in the output path.The IOBuf’s input outbus is 
replaced by outbus1, which is defined as: 

outbus1[7:0] = outbus[7:0]; 
outbus1[15:8] = be & a1 ? outbus[7:0] : outbus[15:8]; 
outbus1[23:16] = be & a2 ? outbus[7:0] : outbus[23:16]; 
outbus1[31:24] = be & a3 ? outbus[7:0] : outbus[31:24]; 

The various chip- and byte-enable signals are defined as (see also 5.1.): 

SRce0 = be & adr[1]; 
SRce1 = be & ~adr[1]; 
SRbe[0] = be & adr[0]; 
SRbe[1] = be & ~adr[0]; 
SRbe[2] = SRbe[0]; 
SRbe[3] = SRbe[1]; 

5.4. Interrupts 
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The last facility to be added to the RISC is that for interrupts. It was first introduced in computers 
around 1960. The principal motivation was avoiding the need for distinct, small processors to handle 
small, peripheral task, such as the acceptance of input data and of buffering them, before the actual 
computing process was ready to accept them. Instead, the main process was to be interrupted, i.e. the 
processor was to be borrowed (for a short time) to handle the request, and thereafter to be returned to 
its interrupted task. Hence, the interrupt facility had a purely economical motivation. 

One might assume that in the era of unbounded computing resources those small processess would 
no longer have to share a processor, but would be represented by programs on separate, distinct 
processors such as microcontrollers. This is partly happening. However, the interrupt is such a 
convenient feature for economizing hardware that it continues to persist. It is indeed, as will be seen 
shortly, very cheap to implement – at least in its basic form. 

One should consider the effects of an interrupt evoked by an external signal as if a procedure call had 
been inserted at random in the current instruction sequence. This implies that not only the call 
instruction is executed, but also that the entire state of the current computation be preserved and 
recovered after ending the interrupt procedure. Different strategies for implementation differ primarily 
by the techniques for saving the state. The simplest implementation saves, like a procedure call, only 
the current PC (in an extra register), and leaves the rest to the interrupting program, such as the 
saving of used registers to software. This is the cheapest solution for hardware, but also the most 
time-consuming for software. At the other end of the spectrum lies hardware saving all registers 
including stack pointers, or even providing multiple sets of registers for interrupts, letting an interrupt 
handler look as a regular procedure. A further sophistication lies in providing several, distinct interrupt 
signals, perhaps even with distinct priorities, or even programmable priorities. There is no limit to 
complexification. 

One addition, however,  is mandatory, namely a state register indicating whether or not interrupts are 
admitted (intEnb). For the programmer of interest is that we obtain three new instructions, one for 
returning from an interrupt routine, and two for setting the enable state. They are all encoded in the 
form of branch instructions with u = 0: 

 
Fig.  13. Special instructions for interrupt and trap handling 

Following our credo for simplicity we here present a solution requiring the minimal effort on the side of 
the hardware. This also lies in accord with the needs for teaching the concept.  These are the 
declarations of new variables:: 

input irq0, irq1; interrupt requests 
reg intMd, intEnb0, intEnb1; interrupt mode, interrupt enable 
reg [21:0] SPC; saved PC on interrupt 
wire [17:0] pcmux0; 
wire intAck; enabled interrupt request 
wire nn, zz, cx, vv; condition codes 
wire RTI; return from interrupt instruction 

When one of the irq signals becomes high, an interrupt is pending. It causes intAck to become high, if 
interrupts are enabled (intEnb), the processor is not currently executing another interrupt handler 
(~intMd), and the processor is not stalled. When intAck is high, the current PC is saved in the new 
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SPC register, and pcmux becomes 1, i.e. the next instruction is read from address 4. At the same 
time, the condition bits are also saved (in SPC[21:18]), and the processor enters the interrupt mode. 

intAck0 = irq0 & intEnb0 & ~intMd & ~stall; 
intAck1 = irq1 & intEnb1 & ~intMd & ~stall; 
pcmux = ~rst ? 0 : intAck0 ? 1 : intAck1 ? 2 : pcmux0; 

N <= nn; Z <= zz; C <= cx; OV <= vv; 
SPC <= (intAck0 | intAck1) ? {nn, zz, cx, vv, pcmux0} : SPC; 
intMd <= rst & ~RTI & (intAck0 | intAck1 | intMd); 

A return from interrupt instruction (RTI) causes the next instruction address to be taken back from 
SPC[17:0] and the condition bits from SPC[21:18]. Furthermore, the processor leaves the interrupt 
mode.

 
Fig. 14. Interrupt signals 

RTI = p & q & ~u & IR[4]; 
pcmux0 = stall ? PC : RTI ? SPC[17:0] : …… 

nn = RTI ? SPC[21] : ccwr ? aluRes[31] : N; 
zz = RTI ? SPC[20] : ccwr ? (aluRes[31:0] == 0) : Z; 
cx = RTI ? SPC[19] : (ADD|SUB) ? aluRes[32] : C; 
vv = RTI ? SPC[18] : (ADD) ? (sa & ~sb & ~sc | ~sa & sb & sc) : 
          (SUB) ? (sa & ~sb & sc | ~sa & sb & ~sc) : OV; 

The interrupt mode instruction copies IR[7] into the intEnb register, which is cleared upon reset. 

intEnb0 <= ~rst ? 0 : (BR & ~u & IR[6]) ? IR[0] : intEnb0; 
intEnb1 <= ~rst ? 0 : (BR & ~u & IR[7]) ? IR[1] : intEnb1; 

There is evidently very little additional circuitry due to the interrupt facility. However, this solution 
requires that software saves and restored all registers used in an interrupt routine. Note also that the 
interrupt routine must reset the external interrupt request. This typically is done by a command to the 
respective device, effectively an acknowledge signal. 

In order to generate an interrupt signal, the environment is extended as follows. When cnt0 reaches a 
limit, cnt1 is incremented and irq is set to 1. This causes an interrupt every millisecond, given a clock 
frequency of 25 MHz. 

reg irq; 
assign limit = (cnt0 == 25000); 

always @(posedge clk) begin 
  irq <= ~rst | (wr & ioenb& (iowadr == 0)) ? 0 : limit ? 1 : irq; 
end 
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