
Eidgenössische Departement Informatik
Technische Hochschule Institut für
Zürich Computersysteme

Niklaus Wirth A Computer System for
Model Helicopter
Flight Control

Technical Memo Nr. 1:
The Hardware Core

January 1998

284



0

A Computer System for Model Helicopter Flight Control

Technical Memo Nr. 1

The Hardware Core

N. Wirth 15.12.97

Abstract

This memorandum is the first in a series giving an account of the design and structure of the

on−board computer system for controlling a model helicopter. The aircraft itself is designed by a

research group of the Institut für Mess− und Regeltechnik of ETH Zürich. The computer is to

stabilize the helicopter and to execute commands for flight movements. It receives inputs from

various sensors and drives the necessary servos. The computer is built around an ARM processor

and an FPGA.

Contents

1. Introduction

2. Clocking and Reset

3. Interrupts

4. The Memory Interface

5. RAM Initialization

1. Introduction

The system described in this memo was designed specifically for stabilizing the motions of a model

helicopter, and for controlling its pre−programmed flight plan. On the one side stood the desire for a

fairly high computing power afforded by a modern microprocessor, on the other the demand for low

power consumption from batteries. The latter significantly contribute to the load (weight) of the vehicle,

which should be kept as low as feasible without shortening the flight duration unduly. The outputs of the

system control the various servos. Two servos control the nick and roll movements of the helicopter, one

the gear (rotation about the vertical axis), one the pitch of the main rotor, and one the throttle of the

engine. Inputs are received by sensing three gyros and three acceleration sensors, and, at lower and

irregular rates, from a compass and from the global positioning system GPS. The system must exhibit

characteristics of an embedded real−time system, and the memory must be large enough to buffer

logging data. The overall composition is shown in Fig. 1.

>download

>>

>

>

>

>

>

>

servosPWM

memory

processor

UART

ADC

GPS

compass

accelerometers

gyros

Fig. 1. Data flow



1

As processor the StrongARM (DEC) was chosen, primarily because of its optimal performance vs. power

consumption ratio. It delivers more than 100 Mips for only 1 Watt. Also, it features an appealing, regular

architecture with a modern RISC structure. For the implementation of the interface to the various

peripheral devices, a programmable gate array was chosen. It allows the greatest degree of flexibility for

further extensions and for modification without change of physical parts. Although serial data

communication can easily be realized with this resource, an additional UART was included for this

prototype. The schematics of the entire system consist of 5 pages.

Page 1 shows the processor (DC1035), the address latch (3 573s), the address multiplexer (2 157s), the

memory controller implemented in a programmable device (PLD, AMD MACH211SP), and 2 "bus

switches" (3384) for connecting 5V with 3.3V devices.

Page 2 contains the 4−channel UART (SN28L194), two level shifters (MAX3232) for adapting to the

(outdated) RS−232 standard, and two 6−channel AD converters (196).

Page 3 shows the memory, consisting of 8 MByte of RAM and 1 MByte of ROM. The ROM can be

electrically programmed from the processor (Flash−ROM).

Page 4 collects miscellaneous devices, including the power converters (MAX787 and 788) and the input

filters for the ADCs. The power devices are switchers, yielding a high efficiency and minimal power loss

when transforming the battery voltage down to the required levels of 5, 3.3, 3.0, and 1.8 V.

Page 5 contains the FPGA (XC6200), primarily used for generating the pulse−width modulated signals for

the servos (PWM).

2. Clocking and Reset

The system derives all clock signals from a single crystal oscillator running at 3.6864 MHz. The processor

internally generates a 200MHz clock and, dividing by 4, outputs the clock for the memory interface. The

RAM consists of synchronous DRAM parts allowing for a high burst rate in conjunction with the

processors cache buffers. Again dividing by 4, the clock is generated operating the UART and the FPGA

(see Fig. 2).

The reset signal is generated by a reset button and a reset controller chip (7705). It acts as an

asynchronous reset for processor, memory controller, UART and FPGA.

reset

12.5MHz

50MHz

<

>

>>

:

:

:

:

>

UART FPGA

memoryMCosc processor
3.6864MHz

clk mclk

uclk

rst'

Fig. 2. Clock and reset signal distribution

3. Interrupts

The ARM processor features two separate inputs for interrupts. The "regular" interrupt (IRQ) is generated

by the FPGA in 5ms intervals. It triggers the sensing of the inputs. After collecting four sets of inputs,

output signals are computed to control the servos every 20ms (50Hz).

The second, fast interrupt (FIQ) is generated by the UART and affords lowest overhead for buffering

received data. This is due to the fact that the processor uses a second set of registers, thereby avoiding the

necessity of saving and restoring registers upon interrupt.



2

4. The Memory Interface

The interface between the processor and memory essentially consists of a finite state machine

implemented with a programmable logic device (PLD). Addresses are time−multiplexed. a24 and a25

determine the target of a reference. If the RAM is selected, a22 serves to select one of the 2 RAM banks.

Each bank consists of 2 1M x 16 SDRAM chips. a21 is a chip internal bank selector. a10 − a20 serve as

the row address, and a2 − a9 as the column address. a0 and a1 are the byte selectors.

Address assignment

a25/24/22 target address range

0−− RAM 0000 0000 − 003F FFFF (4M)

100 ROM 0200 0000 − 020F FFFF (1M)

101 RAM command 024x xxxx

110 I/O devices 0300 0000 − 033F FFFF

The memory controller and the SDRAMs operate with the memory clock delivered by the processor at 50

MHz (20ns cycle time). The interface is shown in Fig. 3.

a8,a9,a11

a0−a7

a8,a9,a11a18,19,21

a10−a17

MACH211SPDS1035

mreq'
wr
wait'

ras'
cas'
w'

a2−a9

pch a10

w'
cas'
ras'

wait'
wr
mreq'

a25,a24
a22,a20

latch

a1, a0
dq' dq'4

d0−d31 d0−d31

cs'ram0
ram1 cs'

d0−d31

dq'

ras'
cas'
w'

a10

2 TMS626162 2 TMS626162

a0−a7

2 Am29LV400

we'

d0−d31

a0−a7

a8−a15

a16,a17

rom ce'

Fig. 3. The memory interface

The controller essentially is a state machine (see Fig. 4). In its neutral state 0 it waits for a request. Each

state is indicated by a box containing the state's identification. The names in the boxes denote the signals

that are active in the designated state. Note that a name with an apostrophe denotes an active low signal.

Signal names along edges indicate (input) values that determine the next state. Names on top of boxes

denote a RAM command.



3

dqm'

RAP

BA

˜mreq'

mreq'

:

>

;
:

0

>

;

> > >

> >>>

>
:

1a 3a

3b1c

1x

1r

ras'

wait'

wait'

pch

cas'
w'
dqm'

wait'
cas'
pch

wait'

dqm'

dqm'

wait'

ras'
cas'
w'

wait'
ras'
cas'

˜mreq'
˜a25

:

mreq'

˜mreq'

˜mreq'

mreq'
˜rfreq'

a25
˜a24
a22

a25
˜a22

wr

˜wr

>

last

mreq'
˜last

˜last

last

; rfreq' W

;

˜last
˜mreq'

4 5

2

Fig.4. The state machine

The controller being in neutral state 0, the processor initiates a memory access by asserting mreq'. At this

time wr indicates whether it is a read or a write operation, and a24/5 specify the target. For a write−ram

cycle, the machine goes through states 1a, 2, and 3a, for a read−ram cycle, states 1a, 2, 3b, 4, 5, and for

other cycles through states 1x, 1c, or 1r. States 5 and 1x may be repeated a given number of times. For

this purpose, in addition to the state machine, there exists a counter. This counter delivers the signal last

which terminates repetition and deactivates the counter. The counter is triggered in the following

transitions:

0 −> 1x ROM access 8 cycles

0 −> 1x I/O access 16 cycles

0 −> 1c SDRAM command 8 cycles

4 −> 5 SDRAM read 8 cycles

Write cycles: The SDRAM operates with a cas latency of 2 and a burst length of 1. This implies that cycle

1a, issuing a bank activate command to the SDRAM, must be followed by 2 wait cycles, i.e. cycles holding

the processor by activating wait', before a write command is issued in state 3a The machine repeats state

3a until mreq' becomes inactive; then a lst write command is issued which also deactivates the accessed

bank. Note that the processor delivers data one cycle after the address; data are sampled by the RAM in

the cycles where dqm' is active. The signal flows are shown in Fig. 5.



4

Write 4

00 1a 2a 3a 3a 3a

a0 a1 a2 a3

d0 d1 d2 d3

dqm'

Write 8Write 1

d0

a0

3a3a3a3a3a3a3a2a1a2a1a 0

a0 a1 a2 a3 a4 a5 a6 a7

d0

pch

d

w'

cas'

ras'

wait'

0

a

wr

mreq'

3a 3a 3a

Fig. 5. Write cycles of lengths 1, 4, and 8

Read cycles: The SDRAM operates with a cas latency of 2 and a burst length of 8. A burst length of 1 would

be inappropriate, because the requests from the processor terminate two cycles ahead. During a burst the

word addresses are generated by the RAM internally (a0−a2). After the 2 wait states (1a, 2), 2 more

follow (3b, 4). A read (with bank dectivation) is issued in state 3b, and the data are sampled during 8

states 5, the counter having been triggered when entering 5 the first time. If a read request is for less than

8 words, the read burst continues for the full 8 word stream. But the processor is held by asserting wait',

and the RAM output is suppressed by deactivating dqm'. The signals flows are shown in Fig. 6.



5

1x1x1x1x1x1x1x0

d7d6d5d4d3d2d1

a7a6a5a4a3a2a1a0

d0

3b1a0

Read 1

mreq'

wr

0

wait'

ras'

cas'

w'

pch

1a 3b

d0

a a0 a1 a2 a3 a4 a5 a6 a7

d d1 d2 d3 d4 d5 d6 d7

last

Read 8

dqm'

2 4 5 5 5 5 5 5 5 2 4 5

Fig. 6. Read cycles of lengths 8 and 1

Non−RAM cycles: These are specified by a25 = 1. The state machine activates wait' to hold the processor

and triggers the counter (state 1x). If both a25 and a24 are 1, the counter runs through 16, otherwise

through 8 cycles before it activates last, yielding accress cycles of 160ns for the ROM and of 320ns for I/O

devices.

RAM commands: The SDRAM must be initialized properly upon system startup time. This is done by a

write request with a25 = 1, a24 = 0, a22 = 1. The state machine acts like for a non−ram request, with the

exception that for one cycle it activates ras', cas' if a0 = 1, and w' if a1 = 1 (state 1c). The signals

determine the ram command as follows:

ras' cas' w' command

0 0 0 set ram mode

0 0 1 auto−refresh

0 1 0 stop burst (not used)

In the set mode command, the values of the addresses specify the various parameters as follows:

proc adr ram adr property adr field value property value

a10−a12 a0−a2 read burst length 0 1

1 2

2 4

3 8

a13 a3 burst type 0 serial

1 interleaved

a14−a16 a4−a6 cas latency 1 1

2 2

3 3

a19 a9 write burst length 0 = read burst length

1 1



6

RAM refresh: The same action as for the Refresh command is also triggered by the rfreq' signal becoming

active. It becomes effective only in state 0 and if mreq' is inactive. Hence, refresh requests cannot interrupt

an ongoing access operation. State 1r forces cas' = 0 and w' = 1, and it is followed by 7 wait cycles. rfreq'

is set low when the 10−bit refresh counter c reaches the value 0. Hence, a refresh cycle is inserted every

1024 * 20ns = 20.5us.

The design of the state machine is such that the output signals are directly generated by registers that also

determine the state. This solution yields the sharpest edges for the outputs. Note that ras', cas', w'

determine the RAM command, and that all three being 1 means no RAM action. In these cases, wait',

pch, and dqm' are also used to distinguish between states. Furthermore, ras' controls the address

multiplexer; when low, the upper bits (row adr) are fed to the RAM and pch = a20. When a read or write

command is issued to the RAM, pch determines whether a bank deactivation through precharge should

follow the read or write operation. The state assignment is shown in Fig. 7, where those signal values are

printed in boldface that are relevant for the state's unique definition.

state ras' cas' w' wait' pch dqm'

0 1 1 1 1 0 1 idle
1a 0 1 1 0 a20 1 bank select
2 1 1 1 0 1 1

3a 1 0 0 1 mreq' 0 write

3b 1 0 1 0 1 0 read
4 1 1 1 0 0 0

5 1 1 1 1 0 0

1m 0 0 0 0 1 1 mode command
1r 0 0 1 0 1 1 refresh command
1d 0 1 0 0 1 1 deac command

1x 1 1 1 0 0 1 wait

Fig. 7. State assignment

The counter is chosen not as a binary down−counter, but as a sequencer with a state assignment shown

in Fig. 8. The reason for this is the need for fewer and−terms for counter values s1, s2, and s3. The idle

state of the counter is with all register values = 0. The counter is triggered by setting s0 to 1 (and, in the

case of an I/O request, also s3 to 1).

state s3 s2 s1 s0 last

0 1 0 0 1
1 1 0 1 1
2 1 0 1 0
3 1 1 1 0
4 1 1 1 1
5 1 1 0 1
6 1 1 0 0
7 1 0 0 0
8 0 0 0 1
9 0 0 1 1
10 0 0 1 0
11 0 1 1 0
12 0 1 1 1
13 0 1 0 1
14 0 1 0 0
15 0 0 0 0 1

Fig. 8. Counter variable assignment

From the state definitions and the transition diagram (Fig. 4) the inputs of the state registers can be

derived in the form of sums of products, as is most suitable for PLD−implementations. This is shown in

Fig. 9, where each row denotes a term with the corresponding transition indicated at the right end of the

page. In the same manner, Fig. 10 illustrates the transitions of the counter registers.



7

variable ras' cas' w' wait' pch dqm' last wr a25.. a0 m/rfreq' transition

ras' 1 1 1 1 0−−− 0 0 − 1a
1 1 1 1 101− 0 0 − 1mrd
1 1 1 1 10 0 − 1r

cas' 1 1 0 1 2 − 3ab
1 0 0 0 0 3a − 3a
1 1 1 1 101− −1 0 0 − 1mr
1 1 1 1 10 0 − 1r

w' 1 1 0 1 1 2 − 3a
1 0 0 0 0 3a − 3a
1 1 1 1 101− 1− 0 0 − 1md
1 1 1 1 1 11− 0 0 − 1x
1 1 0 0 1 1 11− 1x − 1x

wait' 1 1 1 1 0 0 − 1
1 1 1 1 10 0 − 1r
0 1 1 0−−− 1a − 2
1 1 0 1 0 2 − 3b
1 0 1 3b − 4b
1 1 1 0 0 1 5 − 1x
0 0 1mr − 1x
0 1 0 1d − 1x
1 1 0 0 1 0 1w−1x

pch 1 1 1 1 0−−1 0 0 − 1a
1 1 1 1 101− 0 0 − 1mrd
0 1 1 0−−− 1a − 2
1 1 0 1 0 2 − 3b

dqm' 1 1 0 1 2 − 3ab
1 0 0 0 0 3a − 3a
1 0 1 3b − 4
1 1 0 0 0 4 − 5
1 1 1 0 0 0 5 − 5

Fig. 9. State transitions

variable ras' cas' wait' pch dqm' s3 s2 s1 s0 a25 m/rfreq' transition

s3 1 1 1 1 11− 0 0 − 1rom
1 1
1 1
1 1

s2 0 1 0
1 1
1 0 1

s1 0 0 1
0 1
1 1 0

s0 1 1 1 1 1−− 0 0 − 1xmrd
1 1 1 1 10 0 − 1r
1 1 0 0 0 4 − 5

0 0 1
1 1

1 0 0 0

last 0 1 0 0

Fig. 10. Counter transitions

A last consideration concerns the startup. Upon reset, the processor starts fetching an instruction at

address 0. As the boot sequence is loaded into ROM, and as the lower part of the address space was

allocated to RAM, an address translation must be inserted upon startup. This involves the signal boot,

reset to 1, and set to 0 as soon as the first memory request has been terminated. If boot is active, ram

requests are suppressed and instead interpreted as rom requests. Effectively, this results in the first



8

RAM−request being diverted to ROM.

The Lola specification for the memory controller is directly derived from the transition tables of Fig. 9 and

Fig. 10.

5. RAM Initialization

The first instruction, executed with boot = 1, must be a branch to the ROM, where the boot program

resides, i.e. to address 2000004H. Then the RAM must be initialized with the following sequence of write

instructions with special addresses (a25 = 1, a24 = 0, a22 = 1):

2400002H deactivate banks (precharge)

2400001H auto refresh, issue 8 of these instructions

2488C03H set mode register: write burst length 1, latency 2, serial, read burst length 8, or

248AC03H set mode register: write burst length 11, latency 2, interleaved, read burst length 8


