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Abstract

This thesis introduces and elaborates on specific language constructs that allow
a simple programming of vector computers and help to gain a better
understanding for these programs. Thereby the emphasis lies on the support of
explicitly vectorizable statements as well as on a concept for parameter passing
adapted to the needs of numerical applications.

Vector computers provide powerful instructions for the processing of whole
vectors. The speed of programs is often increasing by orders of magnitude if
these programs allow the use of such instructions, i.e. if they are vectorizable. In
order to make a program run faster, a compiler usually tries to vectorize its
innermost loops. Unfortunately, the dependence analysis required therefore is
quite complicated and often cannot be performed completely. The thesis
therefore proposes a simple language construct allowing the explicit
specification of independence and thus the parallel execution of statements.
Hence, this language construct is much easier to vectorize than loops. It
improves the readability and security of programs without reducing the quality
of the generated code.

The main application area of vector computers are numerical applications of
linear algebra. A problem arising with those programs is that parts of matrices
such as rows, columns or diagonals must be passed as arguments to a
subroutine. Yet, most programming languages do not support such a flexible
way of parameter passing. Array constructors offer a simple and safe way to
solve this problem.

The second part of the thesis focuses on the description of an experimental
programming language called Oberon_V and of an appropriate cross_compiler
for the Cray Y_MP. Oberon_V includes a subset of the language Oberon, which
has been extended by the language constructs mentioned above. Compared to
traditional compilers for vector computers, the Oberon_V compiler excels by its
compactness and efficiency. Detail problems of implementation were solved in
a new and more simple way: some of the achievements were a new way of
generating symbol files to support separate compilation, the optimization of the
generated code by eliminating redundant computations (common
subexpression elimination) and the reorganization of instructions to increase
the execution rate (instruction scheduling). The thesis finally investigates and
judges the code quality of Oberon_V programs in comparison with
corresponding Fortran programs.
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Kurzfassung

In dieser Arbeit werden spezielle Sprachkonstrukte eingeführt, die das einfache
Programmieren von Vektorrechnern erlauben und zu einem besseren Verständ_
nis dieser Programme beitragen sollen. Im Vordergrund steht dabei die Unter_
stützung von explizit vektorisierbaren Anweisungen sowie ein an die Bedürf_
nisse numerischer Applikationen angepasstes Parameterübergabe_Konzept.

Vektorrechner stellen leistungsfähige Instruktionen für das Bearbeiten ganzer
Vektoren zur Verfügung. Programme werden oft um Grössenordnungen schnel_
ler, wenn sie von solchen Instruktionen Gebrauch machen können; d.h. wenn
sie vektorisierbar sind. Zu diesem Zweck versucht ein Compiler gewöhnlich die
innersten Schleifen eines Programms zu vektorisieren. Die dazu notwendigen
Abhängigkeits_Analysen sind kompliziert und können häufig auch nur unvoll_
ständig ausgeführt werden. Es wird ein einfaches Sprachkonstrukt vorge_
schlagen, welches die Unabhängigkeit und somit die parallele Ausführbarkeit
von Anweisungen explizit auszudrücken erlaubt, und deshalb wesentlich
einfacher vektorisierbar ist als Schleifen. Es wird gezeigt, dass damit die Qualität
der Programme bezüglich Lesbarkeit und Sicherheit verbessert werden kann
ohne dabei die Qualität des erzeugten Codes zu vermindern.

Hauptanwendungsgebiet von Vektorrechnern sind numerische Applika_
tionen aus dem Bereich der linearen Algebra. In solchen Programmen stellt sich
oft das Problem, dass Teile von Matrizen, z.B. Zeilen, Spalten oder Diagonalen
als Argumente einem Unterprogramm übergeben werden müssen. Die meisten
Programmiersprachen unterstützen eine solch flexible Art der Parameterüber_
gabe nicht. Mit Hilfe von Array_Konstruktoren lässt sich dieses Problem einfach
und vor allem sicher lösen.

In einem zweiten Teil der Arbeit wird eine experimentelle Programmier_
sprache (Oberon_V) sowie ein dazugehörender Cross_Compiler für die Cray
Y_MP vorgestellt. Oberon_V umfasst eine Teilmenge der Sprache Oberon, welche
um die erwähnten Sprachkonstrukte erweitert worden ist. Der Oberon_V
Compiler besticht durch seine Kompaktheit und Effizienz im Vergleich zu her_
kömmlichen Übersetzern für Vektorrechner. In der Implementierung wurden
diverse Detailprobleme auf zum Teil neue und einfachere Art und Weise
realisiert. Dazu gehören eine neue Art der Erzeugung von Symbol_Files für die
Unterstützung getrennter Übersetzung, die Optimierung des erzeugten Codes
durch Entfernen redundanter Berechnungen (Common Subexpression Elimina_
tion) sowie das Umordnen von Instruktionen zur Steigerung der Ausführungs_
geschwindigkeit (Instruction Scheduling). Schliesslich werden Oberon_V
Programme sowie die erreichte Codequalität im Vergleich zu entsprechenden
Fortran_Programmen untersucht und kritisch beurteilt.





1 Introduction

"As soon as an Analytical Engine exists, it will necessarily

guide the future course of science. Whenever any result is

sought by its aid, the question will then arise − by what

course of calculation can these results be arrived at

by the machine in the shortest time?"

Charles Babbage − The Life of a Philosopher, 1864

With the development of vector computers and massively parallel machines,
highly computing_intensive applications have become feasible within
reasonable time bounds. Since numerical programs constitute the major part of
all applications on these machines, the programming language Fortran is used
in most cases, despite its shortcomings.

While it does not seem clear yet which is the best way to program massively
parallel machines, the programming of vector computers is comparatively well
understood. This thesis concentrates on vector computers only. Since Fortran
77 [Brainerd et al. 1978] provides no special language support for these
machines, an optimizing compiler typically tries to vectorize innermost DO
loops; i.e. it tries to restructure the program in order to allow vector instructions
to be used instead of scalar instructions. It is highly desirable to have as many
vectorizable loops as possible since the execution speed of such loops may be
more than a decimal order of magnitude higher than the one of conventionally
translated loops. Unfortunately, the necessary dependence analysis is quite
complicated, and often it cannot be decided whether it is possible to
restructure a loop without affecting its semantics, in which case it must be
executed sequentially. Therefore, a Fortran programmer has to carefully avoid
any constructs within innermost loops which may inhibit vectorization. In fact,
he must know how the specific compiler in use does vectorize. It would of
course be better to use a suitable language construct instead. The features of
Fortran 90 (see e.g. [Metcalf 1987]) reduce this problem a little bit. However, as
will be shown in Section 1.4, Fortran 90 array expressions require dependence
analysis, too.

This thesis introduces a new language called Oberon_V, based on the
programming language Oberon [Wirth 1988a]. The principal new features of
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Oberon_V are its ability to directly express potential parallelism in assignments
and a construct to specify subarrays which may be passed as arguments to
procedures. The former allows for efficient translation into vector instructions
without dependence analysis, whereas the latter is an essential prerequisite for
the programming of numerical applications (which was missing in Oberon's
predecessors Modula_2 [Wirth 1985a] and Pascal [Wirth 1971]). The
responsibility for the correctness of parallel executable program parts is
delegated to the programmer. This decision is justified by practical examples of
realistic programs.

The thesis is organized as follows: in the first two sections a hypothetical
vector computer will be introduced, allowing to illustrate the basic concepts of
such machines and serving as a basis for (vector) code examples. The problems
arising when trying to vectorize DO loops are illustrated in Section 1.3. A special
feature of Fortran 90, so_called array expressions, is investigated in Section 1.4,
whereas Section 1.5 shows the problems of passing (sub_)arrays to subroutines
and procedures. Chapter 2 describes the main concepts of Oberon_V; possible
translation schemes are shown in Chapter 3. A survey of related programming
languages may be found in Chapter 4. Chapter 5 describes the overall structure
of a complete Oberon_V compiler called OV for the Cray Y_MP [Cray 1988].
Measurements made on a small collection of typical programs compiled with
OV are arranged and discussed in Chapter 6. The thesis ends with the
conclusions in Chapter 7. The Oberon_V language report may be found in
Appendix A. Several typical programs are contained in Appendix B.

1.1 A Hypothetical Vector Computer

The topics of this thesis are programming languages and vector computers.
While it is assumed that the reader has a certain understanding of what a
programming language is, the notion of a vector computer might not be as
clear. For the purpose of abstraction, a hypothetical vector computer is
introduced that will be used instead of a real machine architecture that would
have to be explained in full detail and with all its deficiencies. As a simple
justification, it is stated that this machine reflects the basic programming model

of many modern (register_to_register) vector processors, including machines
such as Cray_1 [Russel 1978], Cray Y_MP [Cray 1988] and Cray_2, or NEC SX_2
and NEC SX_3 [NEC 1989]. In the following, the term vector computer always
refers to this machine model, unless it is explicitly specified otherwise.

All vector computers share the concepts of vectors to which vector

instructions can be applied. A vector is a finite sequence of scalar values called
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elements. It may be held either in a vector register or in memory. In the latter
case, a vector is determined by its starting address c0, a stride c1 and its length l.
The starting address is the address of the first element in memory whereas the
stride specifies the (possibly negative) constant address difference between two
consecutive elements in memory. The length is the number of vector elements
(Figure 1.1).

stride

increasing address
...

starting address

v v v v0 1 2 l−1

Figure 1.1 Memory Mapping of Vectors

In analogy to the notion of a variable address, the term vector address is used for
the pair (c0, c1). Obviously, the set of addresses of all vector elements
corresponds to the range of an affine function f(x) = c0 + c1x with x restricted to
the set {0, 1, ... l−1} (see also Section 3.2).
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Figure 1.2 Hypothetical Vector Computer



14 Introduction

The length of vectors held in main memory is virtually unlimited whereas vector
registers may only hold vectors of a certain maximum length VLmax. Besides the
registers for scalar values, a vector processor provides a special register file
consisting of vector registers. For simplicity, it is assumed that both the scalar
and the vector register file provide an unbounded number of registers; the
former are denoted by S0, S1, etc., the latter by V0, V1, and so on (Figure 1.2).

The power of a vector computer lies in the vector instructions. A vector
instruction is a machine instruction that performs an operation on an entire
vector. It may be a vector load or store instruction to access (parts of) vectors in
memory or scalar operations applied element_wise to their operand vector(s). A
special vector length register VL is used to specify the number of elements to be
manipulated by a vector instruction.

On a real machine, scalar and vector instructions are executed by the
corresponding functional units. Since the execution of an instruction may take
more than a single clock cycle (this is especially true for vector instructions),
functional units are segmented and the instructions are executed in a pipelined

fashion. Furthermore, if different functional units exist for different operations
(e.g. an add and a multiply unit), different operations can be executed
concurrently. It is this parallelity on the instruction level combined with the
possibility to issue a sequence of operations by a single vector instruction that
leads to the significant speedup of vector computers. However, timing aspects
are not of relevance here. They will be discussed later. The hypothetical
machine provides the following instruction classes:

Class Instruction

scalar operations Si := Sj op Sk
scalar comparisons Si := Sj rel Sk
scalar load Si := M[Sj + Sk]
scalar store M[Sj + Sk] := Si
vector operations Vi := Vj op Vk
vector comparisons Si := Vj rel Vk
get vector element Si := Vk[Sj]
set vector element Vi[Sj] := Sk
vector load Vi := M[Vj, Sk]
vector store M[Vj, Sk] := Vi
set VL VL := Sj
get VL Si := VL
vector merge Vi := Vj | Vk (Sl)
jumps jump Sj (˜Sk)
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With the exception of jumps, the instructions are to be read as assignments.
The letters i, j, k and l stand for a register number and the operand position; op
denotes an arithmetic or logic operation and rel stands for one of the relations
=, 9, <, #, > or 3. A Vj operand may be substituted by an Sj operand. Wherever
an Sj operand is expected, an immediate value x (i.e. an integer constant) may
be used instead. An Sk or Vk operand may be substituted by the immediate
value 0. In the examples, a zero operand will be simply omitted. A scalar
comparison "Si := Sj rel Sk" yields 1 or 0 depending on whether the relation is
true or false.

The vector instructions deserve a more precise explanation: every instruction
is executed for as many vector elements as specified by the current value of the
vector length register VL. A vector operation of the form "Vi := Vj op Vk" (or "Vi
:= Sj op Vk", obtained by substitution of Vj by Sj) is to be understood as "Vi[e]
:= Vj[e] op Vk[e]" (or "Vi[e] := Sj op Vk[e]" respectively) for all values of e in the
set {0, 1, ... VL−1}. A vector load instruction of the form "Vi := M[Vj, Sk]" is to
be read as "Vi[e] := M[Vj[e] + Sk]"; hence the address of the element e is
computed by the value of the element e of Vj plus the value of Sk. This is
sometimes called a vector gather operation. A similar interpretation of the
corresponding store operation leads to a vector scatter operation. By substituting
the Vj operand with Sj, the conventional vector load/store instructions are
obtained: e.g. "Vi := M[Sj, Sk]" is to be read as "Vi[e] := M[Sj*e + Sk]"; i.e. Sk
denotes the starting address of the vector whereas Sj denotes its stride. A
constant stride is expressed by simply using an immediate operand instead of
Sj. Hence, the pair (Sk, Sj) represents the vector address.

Vector comparisons "Si := Vj rel Vk" are used to compare entire vectors. The
bit e of the destination register corresponds to the result of the comparison of
vector element Vj[e] with vector element Vk[e]. If the comparison yields true,
the corresponding bit is set to 1, otherwise it is set to 0. This instruction is
useful for the implementation of conditional assignments. The vector merge
instruction "Vi := Vj | Vk (Sl)" merges elements from Vj and Vk, depending on
the vector mask in Sl: if bit e of Sl is set, Vi[e] becomes Vj[e] else Vi[e]
becomes Vk[e].

A special rule governs the "VL := Sj" instruction: not the value of Sj is
assigned to VL but ((Sj−1) MOD VLmax) + 1; i.e. VL becomes the value of Sj
MOD VLmax if Sj is not a multiple of VLmax, else VL becomes VLmax. As will be
seen, this is quite useful for the implementation of operations on vectors longer
than VLmax elements. A similar instruction exists for Cray vector computers (cf.
[Cray 1988]).

Jump instructions "jump Sj (˜Sk)" depend on the negation of the truth value
in Sk. If Sk is 0, the jump is executed, otherwise execution continues with the
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instruction immediately following the jump. By substituting Sk with 0,
unconditional jumps are obtained.

1.2 Vectorization: an Example

From a programmer's point of view, a vector computer looks much like a
conventional machine; the only difference is the availability of vector
instructions using vectors as operands. However, as long as they are ignored,
there is no difference at all. On the other hand, in order to take full advantage of
the potential computing power of a vector computer, it is vital to make use of
the vector instructions. In the early days of supercomputing, some machines
have been used solely because of their superior scalar performance, today a
Cray Y_MP is outperformed by much smaller and cheaper machines (e.g. an
IBM RS/6000) as long as no vector instructions are used. A simple example
shall help to get familiar with the possibilities offered by vector instructions and
especially with the hypothetical vector computer introduced in the previous
Section. Note that vector instructions operate logically in parallel on a vector of
data. Hence, a translator trying to use vector instructions must recognize which
parts of a program may be executed in parallel.

The task in the following is to scale all elements of an array A by a value x
and to increment the scaled value by the corresponding element of an array B.
Both arrays contain a constant number of elements (n). In Oberon [Wirth
1988a] this task may be formulated as follows:

CONST

n = 64;

VAR

A, B: ARRAY n OF REAL;

x: REAL;

i: INTEGER;

...

i := n;

WHILE i > 0 DO DEC(i); A[i] := A[i] * x + B[i] END

A translation of this example into scalar machine instructions is shown below.
Index checks are omitted. Floating_point operations are distinguished from
integer arithmetic by an "F" following the operation symbol. A semicolon
introduces a comment ending at the end of the line.
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; S0 address of A

; S1 address of B

; S2 variable x

; S3 index i

;

S3 := 64 ; i := n

Loop S10 := S3 > 0 ; i > 0

jump Exit (˜S10) ; WHILE i > 0 DO

S3 := −1 + S3 ; DEC(i)

S11 := M[S0 + S3] ; A[i]

S12 := S2 *F S11 ; A[i] * x

S13 := M[S1 + S3] ; B[i]

S14 := S12 +F S13 ; A[i] * x + B[i]

M[S0 + S3] := S14 ; A[i] := A[i] * x + B[i]

jump Loop ; END

Exit ...

If possible, a compiler for a vector computer should generate vector instructions
instead. Since in this example any two loop iterations i1 and i2 are independent

of each other, i.e. it does not matter in what order they are executed (see
Chapter 2), they may be executed in parallel. If n is not greater than VLmax, the
entire loop can be translated into a sequence of a few vector instructions. Note
the similarity between the loop body above ( ) and the solution below:

; S0 address of A

; S1 address of B

; S2 variable x

;

VL := n ; set vector length

V11 := M[1, S0] ; A

V12 := S2 *F V11 ; A * x

V13 := M[1, S1] ; B

V14 := V12 +F V13 ; A * x + B

M[1, S0] := V14 ; A := A * x + B

The elements of the arrays A and B are loaded from memory using vector load
instructions: the vector to be accessed is determined by its starting address
(which is the address of A or B respectively), its stride (which is 1 because it is
assumed that the elements of both arrays are stored consecutively in memory)
and the number of elements (which is implicitly determined by the contents of
the VL register). The translation indicates that the entire loop could indeed be
formulated in some form of a "vector assignment" such as "A := A*x + B" if it
would be available in the programming language at hand.

Unfortunately, most vectors are much longer than the largest vector held in a
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single vector register or their lengths are not known at compile time, which
requires a more sophisticated translation scheme. The straight_forward solution
is to map an operation on a "long" vector to a sequence of operations on
"short" vectors (vector slicing), i.e. to wrap up operations on short vectors in a
loop. In the example above, this idea could lead to the following code:

; S0 address of A

; S1 address of B

; S2 variable x

; S3 counter c

; S4 slice pointer A↑

; S5 slice pointer B↑

;

S3 := n ; initialize counter

S4 := S0 ; initialize A↑

S5 := S1 ; initialize B↑

Loop S10 := S3 > 0 ; c > 0

jump Exit (˜S10) ; WHILE c > 0 DO

VL := S3 ; set vector length

V11 := M[1, S4] ; A[i]

V12 := S2 *F V11 ; A[i] * x

V13 := M[1, S5] ; B[i]

V14 := V12 +F V13 ; A[i] * x + B[i]

M[1, S4] := V14 ; A[i] := A[i] * x + B[i]

S15 := VL ; get vector length of this iteration

S3 := S3 − S15 ; c := c − VL

S4 := S4 + S15 ; A↑ := A↑ + VL

S5 := S5 + S15 ; B↑ := B↑ + VL

jump Loop ; END

Exit ...

For each long vector to be sliced (i.e. the arrays A and B in the example above),
an additional register denoting the starting address of the current vector slice is
introduced: registers S4 and S5 point to the slices A↑ or B↑ respectively. Initially
they are set to the array base addresses. Then they are incremented in each loop
iteration by the length of the current vector slice. The loop terminates if the
value of a counter register (S3) drops to zero (Figure 1.3).
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A↑

B↑

A

B

*

+
x

n

VLmax(n−1) MOD + 1

VLmax

Figure 1.3 Vector Slicing

A subtle point is the computation of the current vector length: in order to
process as many elements as possible within a single iteration, the vector
length register has to be set to the maximum length possible, i.e. to VLmax.
Unfortunately, the length of a long vector is in general not a multiple of VLmax.
Hence, some kind of "start_up" (or "shut_down") code is necessary to correctly
implement a long vector operation. However, using the semantics of the "VL :=
Sj" instruction (cf. Section 1.1), no specific code is necessary. The reader may
see himself that this method leads to the correct number of loop iterations and
vector elements to be processed.

1.3 Vectorization of Fortran DO Loops

Originally introduced by J. Backus in 1954 as the first "high_level" language,
Fortran is still the mainstream programming language for numerical
applications. Fortran has survived several standardization processes; the latest
ANSI standard is called Fortran 90 (cf. [Metcalf 1987]) and evolved from
Fortran 77 [Brainerd et al. 1978] which in the following is simply referred to as
Fortran. In this section it is not speculated on why Fortran has been so
successful over the last 40 years, but it is concentrated on its suitability for the
programming of vector computers.

In fact, Fortran does not support the programming of vector computers by
means of special language constructs or data types. In order to make effective
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use of such a machine, a Fortran compiler therefore has to analyze and
restructure a conventional program so that vector instructions can be generated.
The most promising program parts for such an attempt are innermost DO
loops. It should be clear from the previous examples (Section 1.2) that many
loops may be vectorized, however not all. Whenever some form of dependence
between different loop iterations exist, vectorization may be inhibited. As a
simple example let us consider the following DO loop:

DO 10 I = 1, 10

A(I) = B(5*I − 1) (S1)

B(3*I + 10) = C(I) (S2)

10 CONTINUE

A, B and C are arrays. The two assignment statements are denoted by S1 and S2
respectively, and a specific instance of an assignment is denoted by Sk(i), i.e.
Sk(i) denotes the assignment Sk in the i_th iteration, and k = 1, 2. If the loop is
executed sequentially, the statement S1 may be (flow_)dependent on S2
because the expression 3*I + 10 in S2 may assume the same value for a given I
= i2 as the expression 5*I − 1 in S1 for an I = i1 in a later iteration (i.e. i1 > i2).
However, it is not immediately clear that such a dependence exists. Because the
example is so small, it is possible to consider the values of all indices for B in
S1 and S2:

Index values for B in S1: 4, 9, 14, 19, 24, 29, 34, 39, 44, 49
Index values for B in S2: 13, 16, 19, 22, 25, 28, 31, 34, 37, 40

There are the same indices for I = 4 in S1 and I = 3 in S2 (19) and again for I =
7 in S1 and I = 8 in S2 (34). Thus, S1(4) is flow_dependent on S2(3), i.e. S1(4)
must be executed after S2(3). It is obvious that a parallel execution of S1 for all
index values (using vector instructions) followed by a parallel execution of S2
would change the effect of the loop.

If, still in the same example, the index expression for B in S2 would be 3*I +
9 instead of 3*I + 10, one would obtain the index sequence 12, 15, 18, 21, 24,
27, 30, 33, 36, 39. In this case, the same index value (24) would be assumed
only once for I = 5 in both statements. The reader may see himself that the
suggested parallel execution would be allowed in this case and the effect of the
entire DO loop would not be changed.

In general the situation is not as clear because the index range is not always
as small or even unknown. Nevertheless, there are better, i.e. analytical
techniques to detect dependences. The example shows the following
relationships: an instance S1(i1) uses a value computed by an instance S2(i2) iff
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an iteration I = i1 follows an iteration I = i2 and the variables denoted by B(5*I
− 1) in S1 and B(3*I + 10) in S2 are identical. More formally, iff two integers i1
and i2 exist so that the following (in_)equalities hold

(5i1 − 1 = 3i2 + 10) Y (i1 > i2) Y (1 # i1, i2 # 10)

then S1(i1) uses a value computed by S2(i2). The first equation can be written
as 5i1 − 3i2 = 9 which is a linear diophantine equation in two integer variables.
In order to have a dependence, i1 must be greater than i2 and since both i1 and
i2 are values of the index (or induction) variable I, they must also satisfy 1 # i1,
i2 # 10.

In general, dependence analysis is complex and may require the solution of
linear diophantine equations in several variables with additional constraints.
However, even if techniques for solving such inequalities were available (such
methods do exist, see below), they would not always allow to decide in every
case whether a dependence exists or not. Let us consider a slightly modified
example:

DO 10 I = 1, 10

A(I) = B(c1*I − 1) (S1)

B(c2*I + 10) = C(I) (S2)

10 CONTINUE

The constants 5 and 3 in the index expressions of B have been substituted by
the variables c1 and c2. If it is not possible for a compiler to determine the
actual values of c1 and c2 at compile time, there is little to say about the
solution(s) of a corresponding diophantine equation. Worst_case assumptions
must then be taken into account and a compiler must generate sequential code
even if the programmer knows that no dependence exists. The situation is
similar, if the index expressions are more complex or if they involve an index
array:

DO 10 I = 1, 10

A(I) = A(111 − I**2) (S1)

B(I) = B(C(I)) (S2)

10 CONTINUE

Although both index expressions I and 111 − I**2 in S1 denote disjoint sets of
indices, a compiler in general cannot recognize this situation because the
right_hand expression is not linear in I. For the second statement, a compiler
would have to decide whether there are two integers i1 and i2 with i1 9 i2 and 1
# i1, i2 # 10 such that i1 = C(i2) (or whether C(i) = i for all i's), which is in fact
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impossible since in general the contents of C are unknown to a compiler.
However, a programmer may know that all instances of S1 and S2 are
independent of each other, and hence a parallel execution would be possible:

; S0 address of A

; S1 address of B

; S2 address of C

; S3 address of integer vector 1, 2, ... VLmax

;

VL := 10 ; set vector length

V10 := M[1, S3] ; load the integers I = 1, 2, ... 10

V11 := V10 * V10 ; I**2

V12 := 111 − V11 ; 111 − I**2

V13 := M[V12, S0] ; A(111 − I**2)

M[1, S0] := V13 ; A(I) = A(111 − I**2)

V14 := M[1, S2] ; C(I)

V15 := M[V14, S1] ; B(C(I))

M[1, S1] := V15 ; B(I) = B(C(I))

Up to now, there have been considered relatively simple loops containing
assignment statements only. A compiler can generate vector instructions for
them if no dependences exist that inhibit vectorization. The necessary
dependence analyses are difficult and in general worst_case assumptions must
prevail. Powerful techniques exist today that enable a compiler to vectorize
many cases of typical loops, including certain loops containing IF statements.
The interested reader is referred to the literature; e.g. [Lamport 1974], [Allen
1987], [Burke 1986]. A thorough introduction into DO loop dependence
analysis and further references can be found in [Banerjee 1988].

The main advantage of having a compiler that is able to vectorize ordinary
DO loops is that an immense amount of old software may profit immediately
from vector computers. However, optimal performance depends on more than
only a few vectorizable loops. An important role is played by memory access
patterns (cf. Chapter 6). A programmer should therefore always have in mind
that he is programming a vector computer. Furthermore, the use of arbitrary
statements in a loop usually inhibits vectorization (an entire chapter of the Cray
Fortran Reference Manual is dedicated to such exceptions [Cray 1986]). On the
other hand, some frequently used code patterns such as reduction loops (e.g.
for dot product) are especially recognized by the compiler and then translated
into a specific code sequence although in general such loops do not vectorize
(see also [Cray 1986]). Again, the programmer must exactly know the
applicable code pattern.
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1.4 Vectorization of Fortran 90 Array Expressions

Fortran 90 explicitly supports array expressions, i.e. expressions where the
operands may be entire arrays [Metcalf 1987]. The involved arrays must have
the same shape, i.e. they must have the same number of dimensions and
corresponding dimensions must have the same length. Operations are then
applied element_wise. The array expression

REAL, ARRAY (20, 30) :: A, B, C

...

A := B + C * 0.5

corresponds to the following DO loop nest (using the new Fortran 90 syntax):

DO I = 1, 20

DO J = 1, 30

A(I, J) = B(I, J) + C(I, J) * 0.5

END DO

END DO

The definition of the semantics of array expressions requires the complete
evaluation of the expression on the right_hand side of an assignment before any
(partial) result is assigned to the array variable on the left_hand side. Hence, the
straight_forward translation of an array expression into nested DO loops in
general is only correct if the array on the left_hand side is "disjoint" from all
arrays in the expression on the right_hand side of the assignment (i.e. if the sets
of the array elements are disjoint) or equal to those to which it is not disjoint. If
this condition holds, an array expression can also be translated into vector
instructions without further dependence analysis. If this condition is not
fulfilled, an auxiliary array is usually required to correctly implement the array
assignment.

Note that the introduction of such an auxiliary array (by the compiler!) may
have a significant impact on the efficiency of the assignment since the array
must be allocated first (its size may not be determinable at compile time; see
below) and after the evaluation of the entire array expression and the
assignment to the auxiliary array, the auxiliary array must be copied to the
destination array of the assignment. Finally, it must be deallocated. Thus, a
compiler should try to avoid its introduction whenever possible. As already
explained, this decision requires a "disjoint_or_equal" test. Because not only
entire arrays but also subarrays may be used in array expressions, this test might
not be decidable at compile time (the subarrays might be specified by
variables). The array assignment
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A(1 : 100, K) = A(J : J+99, K)

can only be translated into a simple loop (and hence into vector instructions)

DO I = 1, 100

A(I, K) = A(J + I − 1, K)

END DO

if the subarrays A(1 : 100, K) and A(J : J+99, K) are disjoint or equal (in case of
overlapping subarrays a translation into a simple loop or vector instructions
respectively may also be possible; however, in this case the "iteration direction"
may be not clear at compile time). If the value of J is unknown at compile time,
a pessimistic translation using a temporary array is usually unavoidable (or a
run_time check is required to select between several different code sequences).
Unfortunately, the situation is even worse: in a Fortran 90 subarray specification
it is not only possible to specify a lower and an upper bound, but also a stride.
For example, A(1 : 99 : 2, K) denotes the elements A(1, K), A(3, K), ... A(99, K).
In this case, arrays involved in an array expression are not simply rectangular
subarrays but consist of "grid elements" of the subscripted arrays. If one of the
three components of an array subscript (begin, end, stride) is a variable, the
length of the array is unknown at compile time and must be determined at run
time (possibly involving division). The access order of the elements depends on
the sign of the stride. If the same array name occurs on both sides of an array
assignment, the decision whether its subscripts denote disjoint or equal array
elements may lead to diophantine equations.

Although at first sight, Fortran 90 array expressions seem to be an elegant
construct to support vector or parallel computers, their implicit complexity
requires a significant amount of work that is similar to the amount of work
required for the vectorization of loops. Furthermore, since most of this work is
hidden from the programmer, he might not even be aware of the heavy_weight
tool he is using.

1.5 Array Parameters in Fortran

In Fortran an array is always passed by reference and the programmer is
responsible for its correct usage within the subroutine. If the length of the array
is unknown at compile time, it is passed as an additional parameter by

convention. Within the subroutine, the length parameter is then used to
correctly define the array as a local variable. If an array is multi_dimensional,
so_called leading dimensions (LDx) are passed as additional parameters. The
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matrix multiply subroutine

SUBROUTINE MUL (A, LDA, B, LDB, C, LDC, N)

INTEGER LDA, LDB, LDC, N

REAL A(LDA, 1), B(LDB, 1), C(LDC, 1)

...

END

expects three N x N arrays A, B and C. The leading dimensions of these arrays
LDA, LDB, and LDC and the size N are passed explicitly. Within the subroutine,
the leading dimensions are used to declare the arrays A, B and C. In fact, this is
only a specification of the "address computation rule" for the compiler since the
length of the last dimension is often simply set to 1 (and no index checks are
performed in Fortran). A correct call of the subroutine for three 100 x 100 arrays
X, Y, Z would be the following

REAL X(100, 100), Y(100, 100), Z(100, 100)

...

CALL MUL(X, 100, Y, 100, Z, 100, 100)

Since for the parameters A, B and C simply the addresses of the corresponding
arrays X, Y, and Z are passed, arbitrary subarrays may be specified as arguments.
The following call

CALL MUL(X(10, 20), 100, Y(30, 40), 100, Z(50, 60), 100, 10)

performs a matrix multiplication on the 10 x 10 subarrays X(10 : 19, 20 : 29),
Y(30 : 39, 40 : 49) and Z(50 : 59, 60 : 69) (using the Fortran 90 notation). If the
leading dimension arguments are modified, even worse tricks are possible. Note
that these "techniques" are the only methods to pass subarrays in Fortran.
Therefore they must also be used in high_quality numerical applications, such
as Linpack [Dongarra et al. 1979].

Fortran 90 allows the explicit specification of subarrays as explained in
Section 1.4. Within subroutines, an array parameter may be declared to assume
the size of the corresponding argument. Using a RESHAPE transformation, the
shape of the array may be arbitrarily changed and then passed as an argument.
However, the old_style parameter passing conventions are still valid.





2 A Language Proposal

In the previous chapter it has been argued, why conventionally used
programming languages such as Fortran 77 are not sufficient for the task of
programming vector computers. It has been concentrated on two points,
namely vectorization of loops and parameter passing of subarrays. For a more
thorough survey of related languages, see Chapter 4.

Two new language constructs are proposed which subsequently are shown
to solve these problems. These constructs have been intergrated into an
experimental language called Oberon_V. Oberon_V evolved from Oberon which
was chosen as a basis because it is one of the very few modern general_purpose
programming languages which fulfill the main criteria for good language
design: simplicity, security, fast translation, efficient object code and readability

[Hoare 1974].
In the following sections only the new language constructs are explained;

the full language report may be found in Appendix A. Section 2.3 comprises a
discussion of design decisions which lead to differences between Oberon and
Oberon_V. For a general introduction to Oberon the reader is referred to the
literature [Reiser 1992].

2.1 The ALL Statement

FOR loops and similar loop constructs in other languages (e.g. Fortran DO
loops) explicitly describe a deterministic and sequential iteration process. In
many cases the task to be performed is overspecified by such loop constructs.
Let us consider a simple example: the task is to scale all elements of an array A.
A FOR loop such as the following
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VAR

A: ARRAY 100 OF REAL;

c: REAL;

...

FOR i := 0 TO 99 DO

A[i] := A[i] * c

END

specifies not only that each element of A be scaled with c but also in which
order they are to be scaled. Indeed, the exact execution order does not matter
in the example and thus could be non_deterministic. Furthermore, even the
sequential execution of the loop is unimportant, since for each value of i
different (and thus independent) variables are accessed. In the example, several
or all elements could also be scaled in parallel without changing the effect of
the FOR loop.

It is interesting that the informal description of the task "multiply all
elements of array A with the scale factor c" does neither specify a particular order

nor sequential execution. It is the programmer (forced by the programming
language he uses) who translates the task into a deterministic and sequential
process. Thus, inherent properties of the task are destroyed by "doing more than
necessary" during its translation into a program. In order to vectorize such a
loop, a compiler has to recover these properties using dependence analysis.

One must carefully distinguish between non_deterministic and parallel
execution. If there were an imaginary FOREACH statement which would allow
to express the sequential execution of a statement sequence in a
non_deterministic order, it would be possible to compute the sum s of all
elements of an array A by

VAR

A: ARRAY 100 OF INTEGER;

s: INTEGER;

...

s := 0;

FOREACH i IN {0 .. 99} DO

s := s + A[i]

END

since the order in which the elements are added does not matter (at least for
integers). Obviously, parallel execution would lead to a wrong result. The
importance of having such non_deterministic language constructs has been
stressed before; they do not only allow to avoid overspecification of programs
but as a consequence also simplify program verification. Examples are the
non_deterministic evaluation of guards in Dijkstra's IF and DO statement
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[Dijkstra 1976] or the programming notation UNITY used for the development
of parallel programs [Chandy 1988].

In Oberon_V a new structured statement called ALL statement has been
introduced. The ALL statement is used to specify the independent execution of
a sequence of assignments for a set of (index) values within specified intervals.
The assignment sequence is prefixed by a range declaration which is used to
specify these intervals or ranges. A similar construct (FORALL) may be found in
Vienna Fortran [Zima 1992]; a Fortran offspring especially directed towards
programming of parallel machines. As an introductory example let us consider
the ALL statement corresponding to the scaling example:

VAR

A: ARRAY 100 OF REAL;

c: REAL;

...

ALL r = 0 .. 99 DO

A[r] := A[r] * c (* S(r) *)

END

The range declaration r = 0 .. 99 specifies a new range identifier r which is
associated with the range 0 .. 99. Within the ALL statement, the range identifier
r stands for any integer value i within its associated range, i.e. for any of the
integers 0, 1, 2, ... 99 in the example. Execution of the ALL statement means
that the enclosed assignment sequence S(r) is executed exactly once for each
value i that can be assumed by the range identifier r. The order in which r
assumes such a value i is undefined. Furthermore, in order to be correct, the ALL
statement requires that different assignment sequences S(i1) and S(i2) with i1 9
i2 be independent of each other; i.e. that no variable accessed or modified in the
assignment sequence where r = i1 is modified in any other assignment
sequence where r = i2. In the example, the variables accessed or modified by
S(i1) obviously are different from the variables accessed by S(i2) for i1 9 i2, thus
any two assignment sequences S(i1) and S(i2) are independent of each other.
Because they are independent, they may even be executed in parallel.

In general, an ALL statement may introduce more than a single range
identifier. In this case, the enclosed assignment sequence is executed exactly
once for each combination of values the range identifiers may assume and a
similar independence rule must hold. Using EBNF, the syntax of the general ALL
statement is:
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AllStatement = ALL RangeDeclaration DO AssignmentSequence END.
AssignmentSequence = [Assignment {";" Assignment}].
RangeDeclaration = RangeList {"," RangeList}.
RangeList = ident {"," ident} "=" Range.
Range = Expression ".." Expression.

(for the definition of the non_terminal symbols Assignment and Expression as
well as the symbol ident see Appendix A). The semantics of the ALL statement
can be specified by a rule of inference (cf. Section 2.3.6) which also serves as a
proof outline for verifying programs containing ALL statements. For brevity, only
the case with a single range identifier is shown here (the general definition is
again found in Appendix A). P, Q, P(r) and Q(r) denote predicates describing
the program states before and after the execution of the ALL statement or the
enclosed assignment sequence S(r), respectively:

{P} ALL r = a .. b DO S(r) END {Q}

holds if conditions P(r) and Q(r) exist, such that

(1) P ↑ (R i : a # i # b : P(i))
(2) R i : a # i # b : {P(i)} S(i) {Q(i)}
(3) (R i : a # i # b : Q(i)) ↑ Q

and

R i, j : (a # i, j # b) Y (i 9 j) : (in(i) G out(j) = F) Y (out(i) G out(j) = F)

with in(i) : set of variables that have been accessed by S(i)
and out(i) : set of variables to which values have been assigned to by S(i)

When applied as a proof scheme to the scaling example one obtains:

{P : (R i : 0 # i # 99 : A[i] = A0[i])}

ALL r = 0 .. 99 DO

{P(r) : (A[r] = A0[r])} A[r] := A[r] * c {Q(r) : (A[r] = A0[r] * c)}

END

{Q : (R i : 0 # i # 99 : A[i] = A0[i] * c)}

It is easily verifyed that (1), (2) and (3) hold. Furthermore, all assignments are
independent since in(i) = out(i) = {A[i]} and of course
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R i, j : (0 # i, j # 99) Y (i 9 j) : {A[i]} G {A[j]} = F

Thus, the example using the ALL statement correctly implements the scaling of
array A. Since all assignment sequences must be independent and thus can be
regarded "separately", proofs for larger ALL statements are in general not much
more complicated. Note that it is necessary to check whether independence
holds or not, as will be shown by the following counter example (in particular,
independence is not implied by (1), (2) and (3)):

{P : (s = 0)}

ALL r = 0 .. 99 DO

{P(r) : (s = 0)} s := s + 1 {Q(r) : (s = 1)}

END

{Q : (s = 1)}

Obviously (1), (2) and (3) hold, but in(i) G out(j) = {s} 9 F for different i and j.
Because the ALL statement may be either executed sequentially or in parallel (or
even partially sequential and partially in parallel), the result is indeed undefined.

If a particular sequential execution order were specified, an ALL statement
introducing n range identifiers

ALL r1 = a1 .. b1, r2 = a2 .. b2, ... rn = an .. bn DO

S(r1, r2, ... rn)

END

where S denotes an assignment sequence containing the range identifiers r1, r2,
... rn could be implemented by a loop nest

i1 := a1;

WHILE i1 <= b1 DO

i2 := a2;

WHILE i2 <= b2 DO

...

in := an;

WHILE in <= bn DO

S(i1, i2, ... in);

INC(in)

END;

...

INC(i2)

END;

INC(i1)

END
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Such a conversion must be understood as overspecification of a task, for which
an ALL statement would suffice. It immediately follows that the reverse
conversion is wrong in general.

Due to its properties, an ALL statement can (almost) always be translated
into vector instructions (if an assignment contains boolean operators or
function calls, vectorization may be inhibited, see Section 3.7.2). Hence, it is
easily possible to decide, whether certain parts of a program vectorize or not.
This stands in sharp contrast to the situation in Fortran.

Instead of demonstrating more elaborate examples underlining the
usefulness of ALL statements for practical programs, the reader is referred to
Appendix B where he may find a few longer program samples extensively using
ALL statements.

2.2 Array Constructors

Oberon_V array constructors are used to construct new arrays consisting of

elements of other arrays. Note the difference between Oberon_V array
constructors and constructors in other languages which are used to construct
arrays or records of arbitrary components (e.g. Fortran 90 array constructors
[Metcalf 1987]). An Oberon_V array constructor consists of a range declaration
similar to the one used in ALL statements, followed by an expression using the
range identifiers which have been declared in the range declaration. The syntax
of the array constructor is:

ArrayConstructor = "[" RangeDeclaration ":" Expression "]".
RangeDeclaration = RangeList {"," RangeList}.
RangeList = ident {"," ident} "=" Range.
Range = Expression ".." Expression.

(for the definition of the non_terminal symbol Expression and the symbol ident
the reader is again referred to Appendix A). An Oberon_V array constructor is of
the form

[r1 = a1 .. b1, r2 = a2 .. b2, ... rn = an .. bn: E(r1, r2, ... rn)]

where E(r1, r2, ... rn) is an expression possibly containing the range identifiers r1,
r2, ... rn. Within the expression, each range identifier rk stands for any integer
value ik within the range associated to rk as in ALL statements, i.e. ik N {ak, ak +
1, ... bk}. Thus, the array constructed by the array constructor denotes an (at
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least) n_dimensional array consisting of the elements E(i1, i2, ... in). Using the
variables A: ARRAY 100 OF REAL and B: ARRAY 100, 100 OF REAL, a few
examples shall illustrate legal array constructors and the array they construct:

Array Constructor Elements of the Constructed Array Dimensions

[r = 10 .. 20: A[r]] A[10], A[11], ... A[20] 1
[r = 0 .. 10: A[3*r + k]] A[k], A[3+k], A[6+k], ... A[30+k] 1
[r = 0 .. LEN(B)−1: B[r, r]] Diagonal of B 1
[r = 0 .. 99: B[99−r]] B[99], B[98], ... B[0] 2
[r, s = 0 .. 99: B[s, r]] Transpose of B 2

[r = 10 .. 20: ABS(A[r])] ABS(A[10]), ABS(A[11]), ... ABS(A[20]) 1
[r = 0 .. 9: A[r] * B[r, r]] A[0]*B[0, 0], A[1]*B[1, 1], ... A[9]*B[9, 9] 1
[r = 0 .. 4: A[r] + A[r+5]] A[0]+A[5], A[1]+A[6], ... A[4]+A[9] 1
[r, s = 0 .. 99: −B[r, s]] −B 2
[r, s = 1 .. 10: 1/(r+s−1)] 10 x 10 Hilbert matrix 2

The first 5 examples construct array variables, since the expression following the
range declaration in the array constructor consists of a designator (see Appendix
A.10.3) denoting a variable. In contrast, the last 5 examples construct array

values, since the range declarations are followed by an arbitrary expression
which is not only a designator denoting a variable. The right_most column
denotes the number of dimensions of the constructed array (for an exact
definition of "number of dimensions" see Appendix A.6.2). Often, the number
of range identifiers corresponds to the number of dimensions of the
constructed array; however, this is only true if the type of the expression is not
an array (see 4_th example from top).

In Oberon_V, constructed array variables may be used as arguments for open

array variable parameters. In order to make them efficiently and safely
implementable, a few restrictions must apply, e.g. the subscripts of a designator
must contain only "linear" range expressions. Thus, an array variable constructor
[r = 0 .. 9: A[r*r]] is not allowed. For a justification of these restrictions see
Section 3.9; for an exact specification of array constructors and the restrictions
see Appendix A.10.5 and A10.6.

Figure 2.1 illustrates the passing of a diagonal of the array A as an argument
to the procedure Scale. Since the array constructor introduces a single range
identifier r and the designator A[r, r+1] denotes a (zero_dimensional) scalar

variable, the array constructor denotes a (1 + 0 =) 1_dimensional subarray

variable of A. Within the procedure Scale, this subarray is simply referred to by
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the parameter a; element a[0] stands for A[0, 1], element a[1] stands for A[1,
2] and so on.

VAR

A: ARRAY 10, 10 OF REAL;

PROCEDURE Scale (VAR a: ARRAY OF REAL; c: REAL);

BEGIN ALL i = 0 .. LEN(a) − 1 DO a[i] := a[i] * c END

END Scale;

...

Scale([r = 0 .. 8: A[r, r+1]], 3.14)
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Figure 2.1 Subarray Passing

Since in Oberon_V no value parameters of structured type are allowed (see
Section 2.3.4), array value constructors cannot be used as arguments in general,
but only as arguments for the predefined Oberon_V functions SUM and PROD.
These so_called reduction functions reduce the contents of an array to its sum or
product respectively. They have been introduced, because they are used
frequently (especially SUM for dot product) and because they can be
implemented much more efficiently using special code patterns than using ALL
statements and special computation tricks (cf. Chapter 6). In general, Fortran
compilers also cannot vectorize DO loops implementing reduction functions.
However, they recognize some special code patterns referring to obvious scalar
implementations of SUM and PROD, and replace them by SUM and PROD
respectively [Cray 1986].

The following example illustrates the use of the SUM reduction function to
compute the matrix product of the matrices A and B with result C. For more
elaborate examples, the reader is again referred to Appendix B.

PROCEDURE Mul (VAR A, B, C: ARRAY OF ARRAY OF REAL);

VAR i, j: INTEGER;

BEGIN
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ASSERT(LEN(A, 1) = LEN(B));

i := 0;

WHILE i < LEN(A) DO j := 0;

WHILE j < LEN(B, 1) DO

C[i, j] := SUM([k = 0 .. LEN(A, 1)−1: A[i, k] * B[k, j]]);

INC(j)

END;

INC(i)

END

END Mul;

2.3 Differences between Oberon and Oberon_V

In this section a few more subtle design decision are discussed which lead to
differences between Oberon and Oberon_V. While it was felt that some features
of Oberon are not essential for programming of numerical applications and
hence were omitted to obtain a simpler design and implementation (e.g. certain
basic types and control constructs have been omitted), other changes have
been motivated in order to "repair" minor deficiencies (e.g. the different
handling of procedure types). The latter can be understood as a modest
criticism of Oberon. However, it is emphasized that Oberon_V must be
considered as an experimental language, implemented mainly to prove the
feasibility of a few specific concepts. Thus, whereas Oberon has already been
used to program many applications ranging from simple text editors to
compilers and even operating systems, and thereby proved to be appropriate for
these tasks [Wirth 1988b], an equivalent suitability test for Oberon_V has not
been performed.

2.3.1 Basic Types

Oberon provides a set of eight basic types. The numeric types constituted by
the integer and real types form an inclusion hierarchy, i.e. the smaller type
includes the larger type:

SHORTINT M INTEGER M LONGINT M REAL M LONGREAL

Due to this hierarchy, the conversion of a smaller type into the larger type can
be automatically performed by the compiler, whereas the reverse conversion
(e.g. LONGINT to INTEGER) requires the use of a type conversion function
(SHORT), since the programmer has to ensure that the conversion is legal, i.e.
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that the value of an expression of the larger type is also comprised by the
smaller type. The main reason for having several integer or real types is storage
economy [Wirth 1990].

In general, the use of different integer or real types within a single expression
is not recommended: in such "mixed_type" expressions, determining the exact
operations performed requires a careful and toilsome analysis of the expression.
Often additional LONG or SHORT functions are required to guarantee the
desired accuracy of the computation. If the type of a variable is changed to the
next smaller type (e.g. from LONGINT to INTEGER) now unnecessary SHORT
operations may remain undetected and lead to wrong results. As experience
shows, such errors are difficult to locate, especially if no hard_ or software
support is available (e.g. overflow or range checks).

At least for integers, the problems disappear if only a single integer type,
preferably the largest one, is used. Indeed, on modern RISC computers, different
integer types are only treated differently in the implementation as far as memory
accesses are concerned [Brandis et al. 1992]; e.g. once a SHORTINT is loaded
into a (32_bit) register, all operations on it are essentially LONGINT operations.
Thus, it would be more adequate to specify the "storage size" of a particular
integer variable instead of specifying its type to be a "smaller integer" which
then influences all expressions where the variable is used. Since storage
economy is only a problem when having arrays (or records) containing integer
components, it would suffice to have a possibility to specify the size of these
integer components. Unfortunately, a similar solution for real types would not
be appropriate, since a "long" real number cannot simply be shortened without
loosing its numerical accuracy.

These ideas have not been pursued further. For simplicity, Oberon_V
provides only a single integer and real type (INTEGER, REAL) but also the type
COMPLEX. Together they form the inclusion hierarchy:

INTEGER L REAL L COMPLEX

The real and imaginary components of a complex number can be retrieved by
two predefined functions RE and IM respectively. Conversion of real numbers to
integers is possible with the predefined functions FLOOR, CEILING and TRUNC
(see Appendix A.8.2).
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2.3.2 Pointer Types

In Oberon the extension relationship defined over records is inherited by its
corresponding pointer types; i.e. if a record R1 is an extension of a record R,
then also a pointer type P1 with pointer base type R1 is an extension of a
pointer type P pointing to R. Since a (record) type R1 extends a type R if it is
equal to R or if is a direct extension of an extension of R ([Wirth 1988a], 6.3
Record Types), a pointer type P with pointer base type R is an extension of any
other (!) pointer type Q with the same base type:

TYPE

P = POINTER TO R;

Q = POINTER TO R;

R = RECORD ... END;

VAR

p: P;

q: Q;

...

p := q; q := p

Since R is the (zero) extension of itself, P can be regarded as an extension of Q.
Vice versa, Q can be regarded as an extension of P. Due to the assignment rules
for type extensions, it is possible both to assign p to q and q to p, without
needing their types being equal. Indeed, P and Q are both extensions of each
other and therefore should be considered as being equal. On the other hand,
because the extension relation is only defined over records and its associated
pointer types, the same game does not work anymore if R is an array type. Thus,
the programmer is confronted with the strange fact that any two different

pointer types pointing to the same record type are de facto equal types, but if
they would point to an array they were not.

In Oberon_V, two pointer types are defined to be equal, if their base types
are equal. Furthermore, a pointer variable of type P may be assigned to any
other pointer variable of type Q, if the base type of P is an extension of the base
type of Q. This definition eliminates the unpleasant situation explained above
and it makes the expansion of the extension relationship to pointers
superfluous.

In a second step, the reserved words POINTER TO have been replaced by a
Pascal style pointer declaration using an arrow (↑) instead. This notation must
be understood under consideration of the typical use of pointers. In Oberon,
usually a named pointer type is declared together with its (named) base type.
As a matter of style, having a pointer type called P, the corresponding base type
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identifier is built by appending some suffix, e.g. "desc". A dual convention is to
call the base type B and the associated pointer type Bptr (by appending the
suffix "ptr"). Frequently, only the pointer type is used in variable and parameter
declarations, i.e. the name of the record type merely clutters the definition.
However, type extensions require the name of the record type and thus prevent
the use of anonymous record types in conjunction with a pointer type
declaration as in P = POINTER TO RECORD next: P END.

Instead of relying on individual naming conventions, it is better to
completely avoid the need for such conventions. Due to the Oberon_V
compatibility rules for pointer types, it suffices to declare the pointer base types
only. Whenever an associated pointer type is used, it is newly declared by
writing the ↑ symbol followed by the base type name. The ↑ symbol then
explicitly emphasizes the declaration of a pointer which enhances the
readability of the program and simultaneously serves as some kind of naming
convention. Of course, the same could have been achieved using the old
POINTER TO notation, but then declarations would have become rather lengthy.
For some examples demonstrating the typical usage of the Oberon_V pointer
notation, the reader is referred to Section 5.2.

2.3.3 Procedure Types

Two types designated by two identifiers T1 and T2 are identical in Oberon if
both identifiers T1 and T2 are equal, if they are declared to be identical in a type
declaration of the form T1 = T2 or if variables of type T1 and T2 appear in the
same identifier list of a variable, record field or formal parameter list (with the
exception of open array types). This kind of type equality is usually called name

equivalence and is opposed to structure equivalence, where two types are "equal"
(or at least assignment compatible) if their structures are "equal". Pascal and
Modula_2 are representatives for languages using name equivalence, whereas in
Modula_3 [Cardelli et al. 1988] structure equivalence prevails.

While name equivalence is the standard equality relationship for types in
Oberon, a remarkable exception exists for procedure types. Since the type of a
procedure is constituted by its parameter list, i.e. the kind, number and types of
the parameters as well as the procedure's result type (if any), and since the type
of a procedure is not declared in an explicit type declaration but is specified by
the procedure declaration, two procedures (not procedure variables) always
have different types. Thus, in order to check whether a procedure can be
assigned to a variable of procedure type, the structure of both types, the variable
and the procedure type must be compared; i.e. structure equivalence is used. In
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some cases, this irregularity leads to compiler error messages which are hard to
understand by a novice user not familiar with the details. The following Oberon
example illustrates some of the problems:

TYPE

T = PROCEDURE (x, y: INTEGER; VAR z: REAL);

VAR

v: T;

PROCEDURE P (x, y: INTEGER; VAR z: REAL);

PROCEDURE P1 (p: PROCEDURE (x, y: INTEGER; VAR z: REAL));

PROCEDURE P2 (p: T);

Due to structure equivalence, it is possible to assign the procedure P to the
variable v or to call P1 or P2 with P as actual parameter. However, within P1 it is
not allowed to assign the value parameter p to the variable v, since in case of a
variable assignment name equivalence is used. Nevertheless, it is possible to
call P1 recursively with p (but not with v) as actual parameter, since in this case
formal and actual parameter types are identical ("by accident"). On the other
hand, within P2 it is allowed to assign p to the variable v and to call P2
recursively using p (or v) as actual parameter but it is not allowed to call P1
with p as parameter.

In Oberon_V structure equivalence is used whenever procedure types are
involved; i.e. two procedure types are considered to be "equal", if corresponding
parameters and the result types (if any) are equal (see Appendix A.6.5). Thus,
the problems mentioned before completely disappear.

2.3.4 Structure Assignment

In contrast to Oberon, in Oberon_V no structure assignment is allowed (with
the exception of strings, see Section 2.3.5). Its omission has several reasons:

In numerical programs, structured variables typically are arrays. Copying of
arrays should be avoided, since it is a relatively costly operation. Array
parameters are usually passed by reference. If it is still inevitable to copy an
array, the ALL statement is an appropriate and highly efficient alternative.

If a record type R is exported, not all of its fields have to be exported. These
private fields are then not visible outside the declaring module. Within a client
module, the meaning of an assignment of two variables of type R is difficult to
understand, if not all record fields are known. If a private field is a pointer, a
record assignment may not be useful at all, or even worse, it may destroy
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important properties of the exported data structure. Thus, if it is necessary to
assign variables of an exported record type, an appropriate copy procedure is
probably the better solution.

Structure assignment for variables would consequently demand structure
assignment for parameters. Consequently, it should also be possible to specify
open array value parameters. While in Oberon the implementation of open
array value parameters is difficult but feasible, a similar implementation for
Oberon_V would be much more complicated, since then it should also be
possible to use an array value constructor as argument (i.e. as actual
parameter).

The occurrence of structure assignments within larger programs, e.g. a
compiler, may serve as an additional measure for its importance. In the
Oberon_V compiler, structure assignments are rarely required, and their
replacement by field_wise assignments or call of a copy procedure would
impose neither problems nor a loss of efficiency. Last but not least, it is
believed that in language design it is a good idea to choose (textually) "small"
and unobtrusive symbols to denote efficient or simple operations, whereas
costly or difficult operations should be expressed by (textually) "big" and
striking language constructs. While this rule is certainly met with the symbol
":=" for the assignment of unstructured types, it is not always for the assignment
of structured types.

2.3.5 Character Sequences: The Exception

Strings and character arrays, i.e. character sequences of arbitrary length, play an
important role in many programs. Reading of input (scanning) as well as
producing output can often be formulated much more elegantly if a language
provides an appropriate set of operations defined on strings. While in Pascal
[Wirth 1971] and Modula_2 [Wirth 1985a] "string handling" is rudimentarily
supported only (it is possible to assign a string to a character array), Oberon
allows for direct comparison of strings and character arrays. Furthermore, the
standard function COPY relieves the assignment of incompatible character
arrays containing character sequences.

In Oberon_V character sequences are almost always treated specially:
character arrays may be assigned, strings and character arrays may be directly
compared as in Oberon and strings can be used as arguments for variable
parameters (see below). Within assignments of character arrays, the right_hand
side must be a string or a character array containing a character sequence
which is copied to the left_hand character array of the assignment. If necessary,
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the character sequence to be copied is appropriately shortened (i.e. assignment
of character arrays has always the semantics of the predefined Oberon
procedure COPY). Since no structure assignment is allowed in Oberon_V, the
special assignment rules for character arrays do not conflict with other rules for
structured assignments.

Because parameters of a structured type must be variable parameters in
Oberon_V, the assignment compatibility of string constants and character arrays
cannot be used as mechanism to pass string constants as arguments to a
procedure. Again, it is exceptionally allowed to pass a string constant as
argument (i.e. as actual parameter) for a variable parameter. Since variable
parameters usually expect variables as arguments, the string constant is first
copied into an anonymous variable which is then passed instead.

2.3.6 LOOP Statements Considered Harmful

Roughly speaking, the semantics of statements can be mathematically defined
by means of axioms which specify assertions that must hold before and after the
execution of a particular statement (for an introduction into this topic the
reader is referred to the literature, e.g. [Hoare 1969], [Dijkstra 1976] and [Gries
1981]). The essential property of structured statements (i.e. statements which
are itself composed of other statements) is that their semantics can be defined
"in terms of rules of interference permitting deduction of the properties of the
structured statement from the properties of its constituents" [Hoare 1973].

While such an axiomatic specification is easily possible for most structured
statements of Oberon [Reiser 1992], it is not at all for the LOOP statement, since
its structure is not completely defined by itself, but depends essentially on the
presence or absence and the position of corresponding EXIT statements within
the loop. From this viewpoint, the LOOP statement cannot honestly be called
"well_structured".

Within a compiler, the implementation effort for LOOP statements is higher
than for other control structures (except the CASE statement), due to the
necessity to handle corresponding EXIT statements in any nesting level.
Furthermore, it has been shown that the presence of ill_structured statements
such as LOOP and EXIT statements in a programming language significantly
complicate the implementation of optimizing compilers [Brandis 1993].

Due to its unimportance for numerical programs and because of the
considerations mentioned before, the LOOP statement has been omitted in
Oberon_V. It might be noteworthy that its replacement by WHILE loops in the
sources of the Oberon_V compiler led to a more readable and therefore more
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easily understandable program in most cases.

2.3.7 Side_Effect Free Functions

In Oberon, function procedures are ordinary procedures which return a result
value; a function procedure must be called within an expression and then
stands for its result. The same function procedure may be called several times
within an expression, possibly with the same arguments. It is usually expected
to return a value dependent on its arguments (and its environment) only. Then,
in case of multiple calls of the same function procedure with the same
arguments the same result value is returned.

If a function procedure produces side effects, i.e. "anything a (function)
procedure has done that persists after it returns its value" [Winston 1984], the
value of the function may not only depend on its arguments but also on its
"calling position", since as a side effect, the procedure may change its
environment (through global variables or variable parameters). Function
procedures producing side effects are hard to understand and their
inappropriate use can lead to unexpected results. The location of bugs due to
side effects is often quite difficult and time_consuming. In general, the use of
such procedures must be considered as bad programming practice.

However − like all bad habits − as long as such side effects are not explicitly
forbidden, they are used. In Oberon_V, functions are not allowed to produce
side effects. This is achieved by restricting assignments to local variables only
and by prohibiting to call proper procedures within functions. Note that
variables referred to by pointers and variable parameters are considered
non_local variables in Oberon_V. Thus, by simply inspecting the designators on
the left_hand side of assignments a compiler may check, whether the
restrictions are observed or not.

A similar solution may be found in the programming language Euclid
[Lampson et al. 1977], a descendant of Pascal intentionally designed for "the
expression of system programs which are to be verified". In Euclid, functions
must not have variable parameters nor may a value be assigned to non_local
variables. Since non_local (variable) identifiers to be visible within a function or
procedure must be "imported" explicitly in Euclid, this import is simply
forbidden within functions.

In the Oberon System [Wirth 1988b], almost all side_effect free function
procedures obey the restrictions of Oberon_V. Only a few function procedures
produce side effects (even visible ones − e.g. a viewer is opened), and they
would probably better be written as proper procedures.
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Possible implementation schemes for ALL statements and array constructors are
illustrated. The first two sections comprise preliminaries that are required for
the understanding of the rest of this chapter. Theorem 3.1 is a customized
version of a more general one to be found in [Banerjee 1988] (Theorem 4.2.3,
p. 52 ff.). Variable names printed in bold face (e.g. x) are used to denote
n_tupels or vectors; i.e. x : (x1, x2, ... xn). Operations on vectors are applied
element_wise; i.e. x + a : (x1 + a, x2 + a, ... xn + a), xa : (x1a, x2a, ... xna)
and x + y : (x1 + y1, x2 + y2, ... xn + yn), but xWy : e xkyk (1 # k # n) where W
denotes the dot product.

3.1 Linear Functions

A 1_dimensional linear function f(x) over the integers is a mapping of an integer x
to an integer y such that y = cx, where the coefficient c is an integer, too. The set
of integers dom(f) over which the function is defined, is called the domain of f,
and ran(f) : {f(x) : x N dom(f)} is called its range. The set of these functions is
denoted by LF1 : {f : f(x) = cx}. A function f is called total, if dom(f) covers all
integers; and it is called partial, if it is only defined over a restricted set. In the
following special partial linear functions are considered, with their domains
restricted to finite intervals of integers. To be precise, dom(f) = {x : 0 # x < l}
and l > 0. The set of these partial functions is denoted by LF1(l) where l is
called the length of f, len(f). Thus, such a function f is clearly defined by two
integers, namely its length l and the coefficient c, and therefore sometimes f =
LF1(l, c) is written for the specific function f(x) = cx (0 # x < l).
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An n_dimensional linear function f(x1, x2, ... xn) is a mapping of n integers x1, x2,
... xn to an integer y such that y = c1x1 + ... cnxn, where all the coefficients ck (1
# k # n) are integers. The set of all these functions is called LFn : {f : f(x) =
cWx}. The partial functions discussed in the following are restricted to rectangular

domains of the form dom(f) = {(x1, x2, ... xn) : 0 # x1 < l1, 0 # x2 < l2, ... 0 # xn
< ln} or {x : 0 # x < l} for short. The set of these partial functions is denoted by
LFn(l) where l is called the length of f, len(f). Thus, such a function is clearly
defined by 2n integers, namely the 2n components of l and c and sometimes f
= LFn(l, c) is written for a specific function f. Linear functions may be "scaled"
and "added"; i.e. the following properties hold:

LFn(l, c)a : LFn(l, ca)
and LFn(l, c) + LFn(l, d) ) : LFn(l, c + d)

Sometimes it is useful to know the minimum and maximum values assumed by
partial linear functions. The positive part c+ and the negative part c− of an
integer c are defined as follows:

c+ : max(c, 0)
c− : max(−c, 0)

Let f be a partial 1_dimensional linear function with len(f) = m+1, i.e. f =
LF1(m+1, c):

thus 0 # x # m
since c+ 3 0: 0 # c+x # c+m
and −c− # 0: −c−m # −c−x # 0

After adding the last two sets of inequalities one obtains

−c−m # (c+ − c−)x # c+m
c+ − c− = c: −c−m # cx # c+m (*)

i.e. ran(f) is included in the set {−c−m, −c−m + 1, ... c+m}. Indeed, −c−m and
c+m are actually values of the function at the end points x = 0 and x = m of
dom(f):

if c 3 0: f(0) = 0 = −c−m f(m) = cm = c+m
if c # 0: f(m) = cm = −c−m f(0) = 0 = c+m
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Therefore, min(f) = −c−m is the minimum value and max(f) = c+m is the
maximum value assumed by the function f = LF1(m+1, c).

Theorem 3.1. Let f(x) be a partial n_dimensional linear function with length l =
m+1, i.e. f = LFn(m+1, c). Then

min(f) = −c−Wm
and max(f) = c+Wm

Proof. Because of (*), for each k, 1 # k # n:

−ck
−mk # ckxk # ck

+mk

is true and after summation over all k, 1 # k # n:

e −ck
−mk # e ckxk # e ck

+mk
for short: −c−Wm # cWx # c+Wm

Again, these values are indeed assumed by f(x), since f(a) = −c−Wm and f(b) =
c+Wm with a and b defined as follows:

ck 3 0: ak = 0 bk = mk (1 # k # n)
ck # 0: ak = mk bk = 0 (1 # k # n)

`

3.2 Affine Functions

An n_dimensional affine function f over the integers is a mapping of n integers x
to an integer y such that y = cWx + c0. The set of total affine functions is called
AFn, whereas AFn(l) denotes the set of affine functions restricted to a
rectangular area with l = len(f). A specific affine function f is written as f =
AFn(l, c, c0); f is clearly defined by 2n+1 values. Besides "scaling" and "adding",
affine functions may be "moved" and the resulting functions are still affine
functions; i.e. the following identities hold:

AFn(l, c, c0) + a : AF n(l, c, c0 + a)
and AFn(l, c, c0)a : AFn(l, ca, c0a)
and AFn(l, c, c0) + AFn(l, d, d0) : AFn(l, c + d, c0 + d0)
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Linear functions may be regarded as a special case; i.e. LFn(l, c) = AFn(l, c, 0)
and one may write LFn(l, c) = AFn(l, c, c0) − c0. Using this relationship,
Theorem 3.1 is easily adapted to affine functions and then leads to

Theorem 3.2. Let f = AFn(m+1, c, c0). Then min(f) = c0 − c−Wm, and max(f) = c0
+ c+Wm.

3.3 Representation of Expressions by Expression Trees

Expressions consist of operands and operators; operands are either literals (i.e.
constant values), designators or expressions themselves. Operators combine
one or several operands with an operation. Note: in Oberon_V there are also
sets and functions calls. Sets may be reduced to expressions consisting of
literals and designators, whereas function calls may be thought of being treated
as special (user_defined) operators.

Expressions can be represented by expression trees. Their nodes are either
leaf nodes representing literals or designators, or inner nodes representing
operations (Figure 3.1). Inner nodes usually have one or two successors: their
operands. General techniques for the construction of expression trees from
textual representations of expressions are well_known and not explained further
(cf. [Aho 1977]).

op1

op2

x y

z

inner nodes

leaf nodes

expression

(x op2 y) op1 z

corresponding expression tree

Figure 3.1 Expression Trees

A designator consists of a (variable) identifier followed by selectors which again
may contain expressions, e.g. an expression i denoting the element index
within a designator of the form A[i]. Variable access can be regarded as
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dereferencing the variable's address. If a variable's address is not only allowed to
be a constant address but also an address expression, all forms of selectors can be
represented in a unified manner by using a special VAR node denoting
dereferenciation of an address expression.

Var

+

*

Stride

Adr(A)

i

Var

Adr(A)

i Stride

A i Stride

A[i]

Var Var

Var

Adr(p) Adr(p)

p

p↑

Var

+

Offs(f)

Offs(f)Var

r f

r.f

Adr(r)Adr(r)

Figure 3.2 Unified Representation of Selectors

Figure 3.2 depicts the construction of expression trees from the component
expressions. It shows the trees for array indexing, pointer dereferenciation and
record field selection. Thus, all address computations are explicitly visible in the
expression tree. The advantage of such a representation is the possibility to
restructure not only expressions but also address computations, e.g. for
optimization purposes. Note: often address computations are not explicitly
visible in expression trees, but special nodes are used to specify different
selectors (e.g. in the front end of the portable Oberon compiler OP2 [Crelier
1990]).

A complete example of an assignment statement and its corresponding
expression tree using the unified representation of selectors may be found in
Figure 3.3. Obviously, not only expressions but entire statements and programs
may be represented in form of trees which then are called syntax trees.
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+F

*F

:=

+

*

Adr(x)

Adr(y)

Adr(i)

Adr(A)

CONST

N = 100;

VAR

A: ARRAY N OF REAL;

t, x, y: REAL;

i: INTEGER;

BEGIN

...

t := A[i]*x + y

Stride

(For strides = 1 no multiplication

node is necessary)

Adr(t)

VAR

VAR

VARVAR

VAR

VAR

Figure 3.3 Syntax Tree of an Assignment

3.4 Compilation of Range Declarations

Range declarations precede assignment sequences in ALL statements as well as
expressions in array constructors. A 1_dimensional range declaration introduces
a single range identifier r and associates it with a range. In the following it will
be shown that every range identifier denotes the range ran(f) of a partial affine

function f; and vice versa that ran(f) of every partial affine function f may be
expressed by a range expression, i.e. an expression containing range identifiers as
operands. This correspondence will be used to represent a range within a
compiler's data structures and also explains the name range identifier.

Let r be a range identifier associated with the range a .. b; i.e. the range
standing for the set of integers {a, a+1, ... b}. Then, for a function f = AF1(b−a+1,
1, a) the range is ran(f) = {1x + a : 0 # x < b−a+1} = {a, a+1, ... b}, i.e. the range
of the function corresponds to the range a .. b and the length of the function
corresponds to the length of the range. Vice versa, let f be an affine function
with f = AF1(l, c, c0). Then, the corresponding range ran(f) can be denoted by
the range expression r*c + c0, where r is a range identifier declared as r = 0 ..
l−1.
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Thus, a range r − which is also a range expression − can be identified with the
corresponding partial affine function f. Since a specific function f = AF1(l, c, c0)
is clearly determined by 3 values, a range can be represented by these values.

In general, a range declaration introduces more then one range identifier. As
will be seen in Section 3.5, computations are simplified if the correspondence
between a single range r and a 1_dimensional affine function f is generalized to
n_dimensional range declarations and functions. Let us consider the following
n_dimensional range declaration:

r1 = a1 .. b1, r2 = a2 .. b2, ... rn = an .. bn

Each range ri (1 # i # n) corresponds to a function fi N AFn by the following
relationship (with dik denoting the Kronecker symbol, i.e. dik = 1 for i = k and
dik = 0 for i 9 k):

ri = ai .. bi + fi = AFn(l, ci, ci0) with cik = dik and ci0 = ai (1 # i, k # n)

and the length l is the same for all functions fi; namely li = bi − ai + 1 (1 # i #
n); i.e. each range ri is identified with an n_dimensional partial affine function
which "ignores" the values of all xk with i 9 k and "behaves" like in the
1_dimensional case for xi. Since the length l is the same for all functions fi, it
suffices to store it only once. Each range of an n_dimensional range declaration
is clearly defined by n+1 values (the n values of ci plus ci0). The following
example illustrates the situation: the 3_dimensional range declaration

CONST

n = 10;

VAR

a, b: INTEGER;

...

u = 0 .. n−1, v = −10 .. 10, w = a .. b

declares 3 range identifiers with the associated affine functions and their
coefficients:

Function Coefficients (ci0, ci1, ci2, ci3)

fu(x) = (1, 0, 0)Wx + 0 0, 1, 0, 0
fv(x) = (0, 1, 0)Wx + (−10) −10, 0, 1, 0
fw(x) = (0, 0, 1)Wx + a a, 0, 0, 1
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In addition, there is the length l = (10, 21, b−a+1) which is simply associated
with the entire range declaration (thus, it makes sense to speak of the length of
an n_dimensional range declaration). During compilation a range object is
associated to each range identifier. The range object simply contains the
coefficients of the corresponding affine function. Note that a range specification
may contain variables and entire expressions; i.e. the coefficients must be held
in a suitable form, e.g. an array of expression trees (cf. Section 5.2).

Altogether, a range declaration is compiled as follows: first of all, a new
identifier scope has to be opened (by an appropriate procedure of the
compiler's symbol table manager), since range identifiers are local to the
enclosing ALL statement or array constructor. Each new range identifier is then
inserted in the top scope of the symbol table (and an error is raised, if the range
identifier has been declared already in the same scope). For each range a .. b, a
range object is created which represents the function denoted by the range (i.e.
which holds the n+1 coefficients), and the length corresponding to the entire
range declaration is updated. The range object is then bound to its associated
range identifier(s). After the range declaration has been processed, a range
object referred to by its associated identifier can be found with a simple table
lookup. At the end of the enclosing ALL statement or array constructor the
scope is closed again. Figure 3.4 shows the contents of the top scope of a
compiler's symbol table after processing of the previous range declaration
example.

u v w

previous scope

top scope

scope

0 1 0 0 −10 0 1 0 a 0 0 1

identifier list

associated

range objects

coefficients

10 21 b−a+1

length vector

c c c c0 1 2 3 c c c c0 1 2 3 c c c c0 1 2 3

l l l1 2l 3

Figure 3.4 Symbol Table Contents after Processing a Range Declaration

Note that this compilation scheme automatically leads to a canonical

representation of range declarations, since every n_dimensional range declaration
is reduced to a length vector l associated with the entire declaration, and a list
of n range objects which may be referred to by their associated range identifiers
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and which are represented by the coefficients of their corresponding affine
functions. Thus, instead of an n_dimensional range declaration of the form

r1 = a1 .. b1, r2 = a2 .. b2, ... rn = an .. bn

also the canonical range declaration

r1' = 0 .. l1 − 1, r2' = 0 .. l2 − 1, ... rn' = 0 .. ln − 1

with rk = rk' + ak and lk = bk − ak + 1 (1 # k # n) may be used instead without
loss of generality. In this case l = (l1, l2, ... ln) denotes the length of the range

declaration.

3.5 Linear Range Expressions

Range expressions are expressions which have ranges (denoted by range
identifiers) as operands. Each range expression must be considered within its
environment, i.e. within the scope of the corresponding n_dimensional range
declaration. Within a particular range expression, only the range identifiers
introduced by this declaration can occur.

A conventional expression may be represented by an expression tree (cf.
Section 3.3) and, of course, this holds for range expressions too. Within an
expression tree, a range is represented by its associated range object which has
been created during the range declaration. During parsing of an expression, the
expression tree grows. Each operator applied to its operands usually leads to a
new tree node denoting the operation and pointing to its operand trees. Range
expressions are treated in a special way when linear operations are involved (+, −
and * with a scalar value): since each range denotes a function f N AFn(l) and
since this function class is closed under addition and multiplication with a
scalar value, this holds for ranges too. In the example

VAR

a, b: INTEGER;

...

ALL r = a .. b DO

... r*10 + 4 ...

the range identifier r denotes a range object corresponding to the function f =
AF1(b−a+1, 1, a). Therefore the expression r*10 + 4 corresponds to the function

f*10 + 4 = AF1(b−a+1, 10, a*10 + 4) (cf. Section 3.2). Thus, linear expressions
over ranges can be transformed into linear expressions over the ranges'
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coefficients. Figure 3.5 illustrates this transformation for the example. The
lengths of the ranges are never changed (they are not shown in the figure).
Note that for each transformation a new range object must be generated (r' and
r'' in Figure 3.5), because a range object may be shared by different expression
trees.

r

a 1

a 10

10 10

a 10

4

+

*

*

*10 + 4

r' = r * 10 r'' = r * 10 + 4

c c0 1 c c0 1 c c0 1

Figure 3.5 Transformation of Range Expressions

According to the rules for affine functions (Section 3.2), the same
transformations can be performed for n > 1. The range objects declared by an
n_dimensional range declaration correspond to functions f N AFn. Since all
lengths and the number of dimensions of all these functions are the same
within the scope of the range declaration, all linear operations are well_defined.
Within the scope of a range declaration, the objects involved in range
expressions correspond either to scalar values or such functions f. Thus, if the
expression is linear, the entire expression can be represented by a single range
object (cf. also Section 3.8.1). Especially, also expressions of the form a0 +
r1*s1 + r2*s2 + ... + rn*sn, where a0 and the sk's designate scalar values and the
rk's designate range identifiers (1 # k # n), can be represented by a single range
object. Such computations are caused implicitly when subscripting an
n_dimensional array A with n ranges rk. In this case, a0 denotes the address of A
and the sk's denote the strides.

3.6 Reorganization Properties of ALL Statements

An ALL statement consists of an n_dimensional range declaration followed by a
sequence of assignments. In this section it will be shown that this assignment
sequence can be reorganized in such a way that the overall semantics of the
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ALL statement is not changed, but a potentially parallel execution becomes
possible. A general ALL statement containing m assignments Ak is of the form

ALL r1 = a1 .. b1, r2 = a2 .. b2, ... rn = an .. bn DO

A1(r1, r2, ... rn);

A2(r1, r2, ... rn);

...

Am(r1, r2, ... rn)

END

where each Ak(r1, r2, ... rn) may contain the range identifiers r1, r2, ... rn. Instead
of this ALL statement, its canonical form may be used without loss of generality,
i.e. the range declaration may be replaced by its canonical form (cf. Section
3.4). Then, the general ALL statement looks like

ALL r = 0 .. l−1 DO

A1(r);

A2(r);

...

Am(r)

END

using an informal notation where l is the length of the range_declaration (cf.
Section 3.4). According to the definition of the ALL statement, a legal
interpretation of it is (using a pseudo code notation):

FOREACH i IN {x : 0 # x < l} DO

A1(i);

A2(i);

...

Am(i)

END

After numbering the elements of the set R = {x : 0 # x < l}, an explicit
sequence of m*v assignments may be written instead, with v = l1*l2* ... *ln (i.e.
v is the number of elements in R):

A1(i1); A2(i1); ... Am(i1); (* S(i1) *)

A1(i2); A2(i2); ... Am(i2); (* S(i2) *)

... ...

A1(iv); A2(iv); ... Am(iv) (* S(iv) *)
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where each ik (1 # k # v) stands for a different element of R. The definition of
ALL statements requires that any two assignment sequences S(ik) and S(il) with
1 # k, l # v and k 9 l be independent of each other; i.e. no variables that have
been accessed or modified by S(ik) are modified by S(il) and vice versa. Hence,
it is allowed to reorder the assignment sequence to the following form without
changing its effect:

A1(i1); A1(i2); ... A1(iv);

A2(i1); A2(i2); ... A2(iv);

...

Am(i1); Am(i2); ... Am(iv)

This assignment sequence is now considered at a finer level of granularity: each
assignment A(i) is of the form D(i) := E(i) where D stands for a designator and
E stands for an expression; i.e. the assignment sequence can be written in the
form

D1(i1) := E1(i1); D1(i2) := E1(i2); ... D1(iv) := E1(iv);

D2(i1) := E2(i1); D2(i2) := E2(i2); ... D2(iv) := E2(iv);

...

Dm(i1) := Em(i1); Dm(i2) := Em(i2); ... Dm(iv) := Em(iv)

Because functions and hence expressions are side_effect free, and due to the
independence of different assignment sequences S(ik) and S(il), it is even
possible to use parallel assignments instead. For parallel assignments, firstly all
expressions on the right_hand side of the assignment are evaluated and then
the results are simultaneously assigned to the corresponding variables on the
left_hand side:

D1(i1), D1(i2), ... D1(iv) := E1(i1), E1(i2), ... E1(iv);

D2(i1), D2(i2), ... D2(iv) := E2(i1), E2(i2), ... E2(iv);

...

Dm(i1), Dm(i2), ... Dm(iv) := Em(i1), Em(i2), ... Em(iv)

Note that this sequence of m parallel assignments still has the same effect as
the original ALL statement because only semantics_preserving transformations
have been applied. On a vector computer, the expressions Ek(i1), Ek(i2), ... Ek(iv)
(1 # k # m) may be implemented as vector expressions on vectors of length v.
Since v is relatively large in general, it may be necessary to divide the vectors
into a sequence of shorter vectors or vector slices (cf. Section 1.2). The reader
may see himself that such a division still preserves the semantics of the ALL
statement.
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Altogether one may conclude that a sequence of independent scalar
assignments enclosed in an n_dimensional ALL statement of the form

ALL r = 0 .. l−1 DO

A1(r);

A2(r);

...

Am(r)

END

can be translated into a sequence of vector assignments of the form

A1(v);

A2(v);

...

Am(v)

where v denotes the vector of the elements of R (i.e. v = (i1, i2, ... iv) and ik N R

for 1 # k # v), without changing its original effect.

3.7 Translation of ALL Statements into Vector Instructions

With the prerequisites leading the way to this section, half the work necessary
for the translation of ALL statements is already explained. After compilation of
the range declaration as described in Section 3.4, the assignment sequence has
to be parsed and a list of syntax trees for these assignments is built (cf. Section
3.3). Due to the properties of the ALL statement (Section 3.6) these syntax trees
can be regarded as a sequence of vector assignments consisting of a designator
denoting a vector on the left_hand side and a vector expression on the
right_hand side of each assignment. Section 3.7.1 explains the code generation
for 1_dimensional ALL statements, i.e. ALL statements containing a
1_dimensional range declaration. The techniques are generalized to
n_dimensional ALL statements in Section 3.7.2. A few interesting cases such as
array accesses of the form A[B[i]] and conditional assignments are considered
in Section 3.7.3. The handling of index checks is omitted here but explained in
Section 3.9.
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3.7.1 1_dimensional ALL Statements

In case of a 1_dimensional ALL statement, vector instructions can be generated
without further reorganization of the syntax tree: as for scalar expressions, the
assignment list is traversed and code is generated by recursively traversing the
left_hand and right_hand side of the expression trees for each assignment (code
generation for scalar expression trees is not explained here; the reader is
referred to standard literature on compiler construction, e.g. [Aho 1977]). In
most cases, a variable denoting a vector is represented by a VAR node and its
address which is a range object (see Sections 3.3 and 3.5, special situations are
described in Section 3.7.3). In the 1_dimensional case, this range object
contains two coefficients c0 and c1 only representing the vector address (Section
1.1) which directly may be used to generate the necessary vector load or store
instruction. However, since the length of vectors is usually longer then the
maximum vector length VLmax of a vector register or even unknown at compile
time, the vectors have to be sliced; i.e. a loop enclosing the vector assignments
and additional slice pointers are required (cf. Section 1.2). As an example, a
simple ALL statement is considered:

:=VAR

A, B: ARRAY 1000 OF REAL;

x: REAL;

e1, e2: INTEGER;

...

ALL i = 0 .. 99 DO

A[i * e1] := B[i * e2] * x

END

e1

e2

Adr(A)

Adr(B)

Adr(x)

*

c c0 1

c c0 1

VAR

VAR

VAR

Figure 3.6 ALL Statement and Corresponding Syntax Tree

After processing the ALL statement, the syntax tree illustrated in Figure 3.6 is
obtained plus the length l = 100 of the range declaration (not shown in the
figure). For a real machine with VLmax < l (or l unknown at compile time), a
slicing loop is necessary and the code may then look as follows (compiled for
the hypothetical vector computer introduced in Section 1.1):
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; S0 address of A

; S1 address of B

; S2 variable x

; S3 variable e1

; S4 variable e2

; S5 counter (introduced by the compiler)

; S6 slice pointer A↑ (introduced by the compiler)

; S7 slice pointer B↑ (introduced by the compiler)

;

S5 := 100 ; initialize counter c with range length

S6 := S0 ; initialize A↑

S7 := S1 ; initialize B↑

Loop S10 := S5 > 0 ; c > 0

jump Exit (˜S10) ; WHILE c > 0 DO

VL := S5 ; set vector length

V11 := M[S4, S7] ; B[i * e2]

V12 := S2 *F V11 ; B[i * e2] * x

M[S3, S6] := V12 ; A[i * e1] := B[i * e1] * x

S13 := VL ; get vector length of this iteration

S14 := S3 * S13 ; e1 * VL

S6 := S6 + S14 ; A↑ := A↑ + e1 * VL

S15 := S4 * S13 ; e2 * VL

S7 := S7 + S15 ; B↑ := B↑ + e2 * VL

S5 := S5 − S13 ; c := c − VL

jump Loop ; END

Exit ...

The code for the vector expression (marked by a vertical bar on the left margin)
corresponds directly to the expression tree in Figure 3.6, with the only
exception that the coefficients c0 have been replaced by auxiliary variables
(namely the slice pointers A↑ and B↑). Thus, for a 1_dimensional ALL statement
where the expression tree contains m range objects, in general m+1 additional
variables have to be introduced by the compiler: m variables for the slice
pointers and 1 variable for the loop counter. Furthermore, note that the strides
of A and B and the scaling factor x are denoted by simple variables (e1, e2 and
x) in this example. In general, strides and scalar values may be arbitrary
expressions. Beacuse these scalar expressions do not change their values during
execution of an ALL statement, they could be computed once before entering
the slicing loop (if these expressions would change their values, different
assignment sequences of the ALL statement would not be independent). These
optimizations and the introduction of the slice pointers can be obtained by a
simple traversal of the syntax tree corresponding to the assignment sequence.
During this traversal, the following substitutions are done:
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1. Introduce a new (anonymous) variable v for each scalar expression E
which is not simple, i.e. which is not simply a literal or an
unstructured variable, or which is the coefficient c0 of a range object.

2. Substitute this scalar expression E by the newly introduced variable v
in the expression tree.

3. Generate an assignment statement "v := E", i.e. the corresponding
syntax tree, and append it to a special list L1 of assignments which
have to be executed before entering the slicing loop of the ALL
statement.

4. If the substituted expression E was a c0_coefficient of a range object,
then generate an assignment statement "v := v + c1*VL" and append it
to a special list L2 of assignments which have to be executed at the

end of each slicing_loop iteration.

After these transformations, a 1_dimensional ALL statement can be translated to
machine code in 5 steps (if also run_time index checks are to be generated, an
additional step is necessary; cf. Section 3.9):

1. Generate code for the assignment sequence L1.
2. Generate code for the slicing loop header, i.e. introduce a new counter

variable c (preferably to be held in a register), initialize it with the
length of the range and generate code to check the termination
condition.

3. Generate code for the vector assignments by traversing the syntax
trees.

4. Generate code for the assignment sequence L2.
5. Generate code for the slicing loop end, i.e. decrement the counter

variable c by (the current value of) VL and generate a jump to the
beginning of the loop.

In case of a range with constant length not greater then VLmax, neither a slicing
loop nor additional variables have to be introduced but code can be generated
directly by traversing the expression tree. Thus, using a constant length VLmax,
vector expressions can be mapped one_to_one to the machine's vector
instructions.
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3.7.2 n_dimensional ALL Statements

The basic insight leading to an implementation of multi_dimensional ALL
statements is that a n_dimensional ALL statement of the form

ALL r = 0 .. l−1 DO

S(r)

END

can be emulated using n loops and n additional variables x1, x2, ... xn:

x1 := l1;

WHILE x1 > 0 DO

x2 := l2;

WHILE x2 > 0 DO

...

xn := ln;

WHILE xn > 0 DO

VL := (xn − 1) MOD VLmax + 1;

ALL r' = 0 .. VL−1 DO

S'(r')

END;

xn := xn − VL

END

...

x2 := x2 − 1

END;

x1 := x1 − 1

END

The innermost loop proceeds in steps of VL with VL # VLmax. Since the
enclosed ALL statement processes vectors of length VL, no slicing loop is
required and the statement sequence S'(r') can directly be implemented using
vector instructions (cf. previous Section). Thus, the key to the implementation
of n_dimensional ALL statements is the transformation of the assignment
sequence S(r) containing n different ranges r1, r2, ... rn to an assignment
sequence S'(r') using only a single range identifier r' denoting a range of length
VL. In the following this goal is approached in a few small steps.

Within the syntax trees of an n_dimensional ALL statement, a range object
represents a function f N AFn(l). For each element e of the range ran(f) of such a
function, the assignment sequence within the ALL statement must be executed
once. In case of a 1_dimensional function f(x) = c1x + c0 with 0 # x < l, the
range corresponds directly to the vector of elements (e) = (c0, c0 + c1, c0 + 2c1,
... c0 + (l−1)c1) and hence vector instructions can be generated immediately
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(Section 3.7.1). In case of an n_dimensional function f(x) = cWx + c0, all
elements e of ran(f) can be enumerated using n loops and n variables x1, x2, ...
xn as indicated in the beginning:

x1 := l1;

WHILE x1 > 0 DO x1 := x1 − 1;

x2 := l2;

WHILE x2 > 0 DO x2 := x2 − 1;

...

xn := ln;

WHILE xn > 0 DO xn := xn − 1;

e := f(x1, x2, ... xn)

END

...

END

END

Since f is an affine function, the enumerated values e can be computed
incrementally. In this case, n auxiliary variables vk are needed and the variables
xk degenerate to counter variables:

v1 := c0; x1 := l1;

WHILE x1 > 0 DO

v2 := v1; x2 := l2;

WHILE x2 > 0 DO

...

vn := vn−1; xn := ln;

WHILE xn > 0 DO

e := vn;

vn := vn + cn; xn := xn − 1

END

...

v2 := v2 + c2; x2 := x2 − 1

END;

v1 := v1 + c1; x1 := x1 − 1

END

If the innermost loop proceeds faster than in steps of 1, e.g. in steps of VL, the
elements are enumerated in form of entire vectors (e) and then the following
code is obtained (only the innermost loop is shown):
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...

vn := vn−1; xn := ln;

WHILE xn > 0 DO

VL := (xn − 1) MOD VLmax + 1;

(e) := (vn, vn + cn, vn + 2cn, ... vn + (VL−1)cn);

vn := vn + VL*cn; xn := xn − VL

END

...

Thus, the enumeration of ran(f) for f N AFn(l) has been reduced to the
enumeration of ran(f') with f'(x) = vn + cnx and f' N AF1(VL). The same
transformations can be applied to every range object within an n_dimensional
ALL statement. After these transformations, every range object corresponding to
a function f N AFn(l) has been substituted by a 1_dimensional range object
corresponding to a function f' N AF1(VL). Then, for every range object r, n
auxiliary variables vkr (1 # k # n) are required. For a given k, all these vkr must
be initialized before entering the loop k and incremented by the corresponding
coefficient ckr in the loop k, thus leading to the following loop structure for the
ALL statement (remember the special instruction available for the computation
of VL; cf. Section 1.1):

initialize all v1r; (* prolog 1 *)

x1 := l1;

WHILE x1 > 0 DO

initialize all v2r; (* prolog 2 *)

x2 := l2;

WHILE x2 > 0 DO

...

initialize all vnr; (* prolog n *);

xn := ln;

WHILE xn > 0 DO

VL := (xn − 1) MOD VLmax + 1;

ALL r' = 0 .. VL−1 DO

S'(r')

END;

increment all vnr; (* epilog n *)

xn := xn − VL

END

...

increment all v2r; (* epilog 2 *)

x2 := x2 − 1

END;

increment all v1r; (* epilog 1 *);

x1 := x1 − 1

END
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The range transformation algorithm is described by the pseudo code procedure
SubstituteRange. It is assumed that an expression tree is represented by
Expression nodes pointing to their operands. Among others, operands may be
range objects represented by Range records or VAR nodes represented by
Variable records (see below). Note that each coefficient r.c[k] of a range object r
is again an expression tree (possibly holding a constant object only). Since VAR
nodes and range objects may occur at any position within an expression tree,
they must be freely interchangeable. The type definitions below indicate an
implementation using type extension (for implementation details, cf. Chapter 5).
The goal of SubstituteRange is to substitute all range objects with n coefficients
by range objects with only two coefficients and thereby to determine the
necessary initialization and increment statements for the newly introduced
variables vkr. These statements are held in n assignment lists called Prolog[k]
and Epilog[k] respectively and subsequently can be used to generate the n
loops for the ALL statement.

TYPE

Expression = RECORD ... END;

Variable = RECORD (Expression) ... END;

Range = RECORD (Expression) c: ARRAY n+1 OF ↑Expression; ... END;

VAR

Prolog: ARRAY n+1 OF assignment list;

Epilog: ARRAY n+1 OF assignments list;

PROCEDURE SubstituteRange (VAR r: ↑Range);

VAR k: INTEGER; h, v: ↑Variable; pv, c: ↑Expression;

BEGIN

pv := r.c[0]; k := 1;

WHILE k <= n DO

c := r.c[k];

IF ˜Simple(c) THEN

allocate a new variable h, generate an assignment "h := c" and append it to Prolog[1];

c := h

END;

allocate new variable v;

generate an assignment "v := pv" and append it to Prolog[k];

IF k = n THEN generate an assignment "v := v + VL * c" and append it to Epilog[k]

ELSE generate an assignment "v := v + c" and append it to Epilog[k]

END;

pv := v; k := k + 1

END;

generate a new range r' with r'.c[0] := pv and r'.c[1] := c;

r := r'

END SubstituteRange;
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SubstituteRange processes all coefficients c = r.c[k] of a range r sequentially: a
new variable v is introduced (corresponding to the variables vkr) and syntax
trees corresponding to the assignment "v := pv" and "v := v + c" are generated
and appended to the list of prolog and epilog assignments of the k_th loop. The
variable pv is a reference to the previously introduced variable v and
corresponds to vk−1r. In case of the innermost loop (k = n), v is incremented by
VL*c since vector instructions are used and hence VL elements are processed in
each loop iteration. As an optimization, coefficients c which are not simple, i.e.
which are not simply constant values or variables with simple address, are
substituted by variables h which then are initialized outside the loop nest (i.e. in
Prolog[1]).

SubstituteRange is easily extended such that temporary variables are
introduced for all scalar expression that are not simple (cf. Section 3.7.1). If ln is
known at compile time and ln # VLmax for an n_dimensional ALL statement, the
innermost loop is not required. Furthermore, if ln # VLmax and n = 1, no loop
and also no additional variables are required (both optimizations are omitted in
SubstituteRange).

In some cases, a translation of the ALL statement into scalar instructions is
desired, either because certain vector instructions are missing or because no
vector instructions are available at all. Then, SubstituteRange must substitute all
range objects by scalar slice pointers. The necessary modifications at the end of
the procedure SubstituteRange are shown below:

...

generate an assignment "v := pv" and append it to Prolog[k];

generate an assignment "v := v + c" and append it to Epilog[k];

pv := v; k := k + 1

END;

r := pv

END SubstituteRange;

(and the type of the procedure parameter r must be adjusted). When generating
the n slicing loops, of course the vector length register must not be set and the
innermost loop counter must be decremented in steps of 1.

As an example, the transformations applied to a 2_dimensional ALL
statement are considered. After compilation of the range declaration and
processing of the enclosed assignment, the syntax tree shown in Figure 3.7 is
obtained.
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:=

*

100 1 Adr(x)

VAR

A, B: ARRAY 100, 100 OF REAL;

a, b: INTEGER;

x: REAL;

...

ALL i = 10 .. 20, j = a .. b DO

A[i, j] := B[j, i] * x

END

Adr(A) 1000

a

+

+ 1 100+

+

*

a 100

Adr(B)

10

c c c0 1 2

c c c0 1 2

VAR VAR

VAR

Figure 3.7 Syntax Tree of an Assignment within a 2_dimensional ALL Statement

The syntax tree is traversed recursively with SubstituteRange and the
2_dimensional range objects are substituted by 1_dimensional range objects.
The resulting syntax tree and the prolog and epilog assignment statements are
shown in Figure 3.8.

:=

*

Adr(x)1

100

Prolog Assignments

k = 1: v1 := Adr(A) + 1000 + a; w1 := Adr(B) + a*100 + 10

k = 2: v2 := v1 ; w2 := w1

Epilog Assignments

k = 1: v1 := v1 + 100; w1 := w1 + 1

k = 2: v2 := v2 + VL; w2 := w2 + VL*100
v

w

2

2

VAR

VAR VARc c0 1

c c0 1

Figure 3.8 Syntax Tree after Transformation
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The newly introduced variables required for the range object on the left_hand
side are called vk, the variables introduced for the range object on the
right_hand side are called wk. After introducing 2 additional counter variables x1
and x2, the prolog and epilog assignments as well as the transformed syntax
tree can be used directly to generate two nested loops:

v1 := Adr(A) + 1000 + a; w1 := Adr(B) + a*100 + 10; (* prolog 1 *)

x1 := 11;

WHILE x1 > 0 DO

v2 := v1; w2 := w1; (* prolog 2 *)

x2 := b − a + 1;

WHILE x2 > 0 DO

VL := (x2 − 1) MOD VLmax + 1;

ALL r = 0 .. VL−1 DO

A'[v2 + r] := B'[w2 + r] * x

END;

v2 := v2 + VL; w2 := w2 + VL*100; (* epilog 2 *)

x2 := x2 − VL

END;

v1 := v1 + 100; w1 := w1 + 1; (* epilog 1 *)

x1 := x1 − 1

END

A' and B' stand for the arrays A and B regarded as "flattened" 1_dimensional
arrays; i.e. the addresses of A' and B' correspond to the addresses of A and B,
and A' and B' are of type ARRAY 100*100 OF REAL. Since the length of the
range r within the enclosed ALL statement is not greater than VLmax, the ALL
statement can be directly translated into vector instructions and the following
instruction sequence is obtained for the example:

; S0 address of A

; S1 address of B

; S2 variable a

; S3 variable b

; S4 variable x

; S5 counter x1 (introduced by the compiler)

; S6 counter x2 (introduced by the compiler)

; S7 variable v1 (introduced by the compiler)

; S8 variable v2 (introduced by the compiler)

; S9 variable w1 (introduced by the compiler)

; S10 variable w2 (introduced by the compiler)

;

S20 := 1000 + S0 ; Adr(A) + 1000

S7 := S20 + S2 ; v1 := Adr(A) + 1000 + a

S21 := 100 * S2 ; a*100
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S22 := S1 + S21 ; Adr(B) + a*100

S9 := 10 + S22 ; w1 := Adr(B) + a*100 + 10

S5 := 11 ; x1 := l1
Loop1 S23 := S5 > 0 ; x1 > 0

jump Exit1 (˜S23) ; WHILE x1 > 0 DO

S8 := S7 ; v2 := v1
S10 := S9 ; w2 := w1

S24 := S3 − S2 ; b − a

S6 := 1 + S24 ; x2 := l2 = b − a + 1

Loop2 S25 := S6 > 0 ; x2 > 0

jump Exit2 (˜S25) ; WHILE x2 > 0 DO

VL := S6 ; VL := x2
V26 := M[100, S10] ; slice of B[j, i]

V27 := S4 *F V26 ; slice of B[j, i]] * x

M[1, S8] := V27 ; slice of A[i, j] := B[j, i]] * x

S28 := VL ; get vector length of this iteration

S8 := S8 + S28 ; v2 := v2 + VL

S29 := 100 * S28 ; VL*100

S10 := S10 + S29 ; w2 := w2 + VL*100

S6 := S6 − S28 ; x2 := x2 − VL

jump Loop2 ; END

Exit2 S7 := 100 + S7 ; v1 := v1 + 100

S9 := 1 + S9 ; w1 := w1 + 1

S5 := −1 + S5 ; x1 := x1 − 1

jump Loop1 ; END

Exit1 ...

3.7.3 Interesting Cases

In this section, expression trees and corresponding code sequences for three
more interesting cases are illustrated without going too much into the details.
No additional complexity is introduced by these cases but only the previously
described methods are consequently applied. For all examples a 1_dimensional
range declaration introducing a range identifier r is assumed. A, B, C and D
denote 1_dimensional real arrays of appropriate length. Coefficients are
designated by small letters a, b, ... h. As explained in Section 3.7.2, the
multi_dimensional case can always be reduced to the 1_dimensional case.
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a) Expressions of the form A[r] op r:

r

op

Adr(A[r])

A[r]

A[r] op r

a b

c dVAR

V19 := V12 op V18 ; A[r] op r

V18 := S17 + V16 ; r

S17 := code for c

V16 := S15 * V14 ; 0, d, 2d, ...

S15 := code for d

V14 := M[1, S13] ; 0, 1, 2 ... VL−1

vector 0, 1, 2 ... VLmax−1

S13 := address of integer

V12 := M[S11, S10] ; A[r]

S11 := code for b

S10 := code for a

b) Expressions of the form A[B[r]] (without index checks):

A[B[r]]

*

+

Adr(A)

Stride(A)

Adr(B[r])

B[r]

a b

VAR

VAR

V16 := M[V15, S10] ; A[B[r]]

V15 := S14 * V13 ; B[r] * Stride(A)

S14 := code for Stride(A)

V13 := M[S12, S11] ; B[r]

S12 := code for b

S11 := code for a

S10 := code for Adr(A)
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c) Expressions of the form SELECT(A(r) rel B(r), C(r), D(r)):

SEL

rel

Adr(C[r]) Adr(D[r])

D[r]C[r]

Adr(A[r]) Adr(B[r])

A[r] B[r]

a b c d

e f g h

VAR VAR

VAR VAR

V23 := V19 | V22 (S16) ; SELECT(...)

V22 := M[S21, S20] ; D[r]

S21 := code for h

S20 := code for g

V19 := M[S18, S17] ; C[r]

S18 := code for f

S17 := code for e

S16 := V12 rel V15 ; A[r] rel B[r]

V15 := M[S14, S13] ; B[r]

S14 := code for d

S13 := code for c

V12 := M[S11, S10] ; A[r]

S11 := code for b

S10 := code for a

3.8 Compilation of Array Constructors

Array constructors are used to construct subarrays which subsequently may be
used as arguments corresponding to open array parameters. There are two
kinds of array constructors, namely constructors that specify an array variable

and constructors that specify an array value. The former may be used as
arguments for variable parameters whereas the later apply as arguments for the
predefined functions SUM and PROD only.

3.8.1 Array Variable Constructors

Firstly, array constructors that specify array variables are considered which may
be used as arguments corresponding to variable parameters. Within a procedure,
variable parameters stand for the variables passed as argument; i.e. they actually
are alias identifiers for these variables. Usually variable parameters are
implemented by passing the addresses of the variables only. If a subarray is to
be passed, a descriptor specifying the addresses of the elements of the specified
subarray must be passed. For arbitrary subarrays, such a descriptor would be an
array containing the addresses of all the elements of the argument array:
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VAR A: ARRAY 100 OF REAL;

...

PROCEDURE f (i: INTEGER): INTEGER;

...

PROCEDURE P (VAR a: ARRAY OF REAL; i: INTEGER);

BEGIN ... a[i] ...

END P;

...

P([i = 10 .. 19: A[f(i)]], 7)

Since f may denote an arbitrary function in the example, the descriptor to be
passed would have to contain an array consisting of the 10 addresses
(Adr(A[f(10)]), Adr(A[f(11)]), ... Adr(A[f(19])). Within P, the element i could
then be accessed by dereferencing the address i of the passed descriptor. While
such an implementation would be feasible, it would probably not be desirable,
due to the overhead implied by the introduction of such an address array on
both sides, the caller of P and the callee P. Thus, a simpler solution is required.

In Oberon_V, the designators which may be used within an array variable
constructor must contain linear range expressions only and no pointer
dereferenciation must occur (cf. Section 3.5 and Appendix A). With this
restrictions, passing an n_dimensional subarray requires passing an array
descriptor containing 2n + 1 integers only as will be shown in the following.

An array variable constructor consists of an n_dimensional range declaration
followed by a designator D denoting a variable. Without loss of generality one
may write (cf. Section 3.4):

[r = 0 .. l−1: D(r)]

The compilation proceeds as for an ALL statement without code generation (cf.
Section 3.7). In a first step, the intermediate data structure is built, i.e. the range
declaration is compiled and an expression tree is constructed for the designator
D(r). Since all designators can be uniformly represented by VAR nodes (cf. Figure
3.2) and because only linear operations are involved when subscripting an array,
the expression tree generated after parsing a designator containing only linear
range expressions is simply a VAR node whose address is a range object

containing n+1 coefficients (cf. Section 3.4 and 3.5). This range object
represents a function f N AFn(l) where l is the length of the range declaration.

Figure 3.9 illustrates this situation for an expression tree representing an
array subscript i which is a linear range expression and thus can be represented
by a range object. The construction of the expression tree proceeds as
described in Section 3.3, but since linear operations over ranges are
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transformed into linear expressions over the ranges' coefficients, the resulting
tree consists of a VAR node which address is again a range object. Note that
also the address node of an array A itself (Adr(A)) could be a range object.

A

+

Adr(A) *

Stride

c c c
0 1 n

...

c
0

*

c
1

*

c
n

...Adr(A)

StrideVAR

VAR

Stride

Stride Stride

i

A[i]
Adr(A[i])

Figure 3.9 Expression Tree for a Linear Designator

According to its definition, the elements specified by the array constructor are
the elements D(i) with i N {x : 0 # x < l}. The designator D(r) is represented by
a VAR node whose address is a range object. This range object specifies an
affine function f N AFn(l). For a particular i N {x : 0 # x < l}, f(i) is the address of
the array element D(i). Thus, the addresses of all array elements D(i) are the
values of f(i) for all i, i.e. the set ran(f) = {f(i) : 0 # i < l}. Therefore, the subarray
is clearly specified by this function f N AFn(l) which itself is specified by 2n+1
integers (cf. Section 3.2), namely its n+1 coefficients − which are the
coefficients of the range object − and its length l. Apparently these 2n+1
integers are the parameters to be passed to the called procedure.

In the following example a 2_dimensional subarray − a diagonal plane − of a
3_dimensional array A is passed to a procedure P.

VAR A: ARRAY 10, 20, 30 OF REAL;

...

PROCEDURE P (VAR a: ARRAY OF ARRAY OF REAL);

VAR i, j: INTEGER;

BEGIN ... a[i, j] ...

...

P([u, v = 0 .. 9: A[u, 2*v, 2*v + 1])

The range declaration introduces 2 range identifiers associated with 2 affine
functions fu, fv N AF

2(l) with l = (10, 10):
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Function Denoted Range

fu(x) = (1, 0)Wx + 0 ran(fu) = {0, 1, ... 9}
fv(x) = (0, 1)Wx + 0 ran(fv) = {0, 1, ... 9}

The designator A[u, 2*v, 2*v + 10] is translated into an expression tree in 3
steps according to Section 3.4 and 3.5. In each step, the expression tree
consists of a VAR node at the root and a range object specifying a function fk N
AF2(l) (it is assumed that Adr(A) = a0 and Size(A[0, 0, 0]) = 1):

Designator Associated Function

A f0 = a0 = Adr(A)
A[u] f1 = (600, 0)Wx + a0 = f0 + fu * 600
A[u, 2*v] f2 = (600, 60)Wx + a0 = f1 + 2*fv * 30
A[u, 2*v, 2*v + 1] f3 = (600, 62)Wx + (a0 + 1) = f2 + (2*fv + 1) * 1

The subarray argument is clearly specified by f3 and l. Therefore, the values to
be passed to P are the coefficients of f3, (a0 + 1, 600, 62) and the length l =
(10, 10). Within the procedure P, the address of an element a[i, j] is computed
by simply applying f3 to i and j: Adr(a[i, j]) = f3(i, j). The length l is necessary for
index checks within P.

Unfortunately this translation scheme is not yet complete; there are two
points which deserve special attention: Firstly, it must not be possible to pass
subarrays that are larger than the subscripted array, i.e. some kind of index check
is required; and secondly, as will be shown below, without further restrictions it
is now possible to construct subarrays which violate a major property of arrays,
namely the invariant that an array of length n consists of n distinct elements. For
index checks the reader is referred to Section 3.9. The second problem is
illustrated by a small example. Let A be an array of which a subarray is to be
passed to a procedure P:

VAR

A: ARRAY 5 OF REAL;

PROCEDURE P (VAR a: ARRAY OF ARRAY OF REAL);

...

P([i = 0 .. 2, j = 0 .. 1: A[i + 2*j]])
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The array constructor contains a 2_dimensional range declaration with length l =
(3, 2); i.e. an array containing 3*2 = 6 elements is constructed of a
1_dimensional array of length 5. Since no index range is violated, two elements
of the newly constructed array must be identical! Figure 3.10 illustrates the
pathological array mapping implied by the array constructor.

A[3] A[4]A[2]A[1]

A

A[0] A[2]

A[1]

A[2]

A[3]

A[4]

i

ja

A[0]

Figure 3.10 Pathological Array Mapping

Within the procedure P, both elements a[0, 1] and a[2, 0] denote the same

element A[2]! In fact, an assignment to the variable a[0, 1] would change a[2,
0] too. It is easy to construct even worse situations; e.g. arrays where all
elements are mapped to a single variable (using a constructor of the form [r = a
.. b: v], where the range identifier r is not used within the designator v). Thus, a
method is required to detect − or better − to avoid such pathological arrays. As
explained before, a general array constructor consisting of an n_dimensional
range declaration and a linear designator

[r = 0 .. l−1: D(r)]

defines an affine function f N AFn(l) which specifies the mapping of the array
indices to the corresponding element addresses. The mapping leads to a
pathological array if the function f is not injective, i.e. if there are two different
indices x and y with 0 # x, y < l such that both are mapped to the same
address. After some arithmetics one gets:

f(x) = f(y) (0 # x, y < l) Y (x 9 y)
cWx + c0 = cWy + c0
cWx − cWy = 0
cW(x − y) = 0

with z = x − y: cWz = 0 (−l < z < l) Y (z 9 0)
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The last equation cWz = 0 is a linear diophantine equation, i.e. a linear equation in
n integer variables. The trivial solution z = 0 is not allowed, because x must be
different from y. Although methods exist to solve such equations (cf. [Banerjee
1988]), they are not considered further, because they had to be applied at run
time in general, since the coefficients of f may be expressions containing
variables. In Oberon_V, the problem is circumvented by three additional
restrictions which apply within array variable constructors:

1. Within a single index expression of the designator in an array variable
constructor, no two different range identifiers must occur.

2. If the array constructor contains an n_dimensional range declaration,
all n range identifiers must be used at least once in the designator.

3. None of the range expressions must denote a constant value (e.g. r*0
+ c, where r denotes a range, and c stands for a constant scalar value).

A linear range expression which contains no two different range identifiers is a
range expression which corresponds to a function f N AFn(l) where only a single
coefficient ck with 1 # k # n is not zero; i.e. f is a function of the form:

f(x1, x2, ... xn) = c0 + 0x1 + 0x2 + ... + ckxk + ... 0xn = c0 + ckxk

and k corresponds to the position of the range identifier in the range
declaration from left to right (due to the way range declarations are compiled,
cf. Section 3.4). Together with restriction (3), this implies that ck must not be
zero, otherwise the range expression would be constant = c0. Thus, the function
f(xk) = c0 + ckxk with ck 9 0 is injective.

In a designator of an array variable constructor, expressions can occur only
as subscript expressions of arrays, due to the syntax of designators. Each
expression denotes either a scalar value or it is a linear range expression
corresponding to an injective function of the form f(xk) = c0 + ckxk. The range
ran(f) denoted by such a function f specifies the indices of the elements of the
subscripted array, and because each index occurs only once for all values of xk
(0 # xk < lk), each array element is denoted only once in this array dimension.
This must hold for all expressions which contain an arbitrary range identifier rk
(1 # k # n) of the range declaration. Since all range identifiers must be used
because of restriction (2), it is not possible to denote the same array element
more than once (if not all range identifiers would have to be used, an array
variable constructor of the form [u, v = 0 .. 9: A[u]] would be possible, and for
different v always the same element A[u] would be denoted). The situation is
illustrated by means of the previous example:
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VAR A: ARRAY 10, 20, 30 OF REAL;

...

[u, v = 0 .. 9: A[u, 2*v, 2*v + 1]

Each expression of the designator in the array constructor contains only a single
range identifier u or v and the functions corresponding to the range expressions
are:

Expression Function Range

u f1(x) = (1, 0)Wx + 0 ran(f1) = {0, 1, ... 9}
2*v f2(x) = (0, 2)Wx + 0 ran(f2) = {0, 2, ... 18}
2*v + 1 f3(x) = (0, 2)Wx + 1 ran(f3) = {1, 3, ... 19}

For all three functions only a single ck (k = 1, 2) is not zero, namely c1 in f1
(because u is the first range identifier in the range declaration) and c2 in f2 and
f3 (because v is the second range identifier in the range declaration). Let us
consider f3: now it is impossible that for different values of x2 the same value is
assumed by f3(x1, x2). Or from the view of the range expressions: it is
impossible that the same value is assumed by the range expression 2*v + 1 for
different values assumed by v (note that v assumes all values within its
associated range). Since similar conditions are fulfilled by all range expressions
and since all range identifiers are used, different array elements are denoted for
different values of the range identifiers u and v.

The additional restrictions impose no problems in practical applications.
Even checking whether the conditions are fulfilled or not is quite easy, although
it might not seem so at a first sight. Restriction (1) is checked whenever an
array index expression is a linear range expression: if so, the linear range
expression is represented by a range object, and only a single coefficient of this
range object must not be zero. Restrictions (2) and (3) are checked after
compilation of the array constructor: if it denotes an array variable, the subarray
is represented by a VAR node whose address is again a range object. If any of
the coefficients ck (1 # k # n) of this range object is zero, either a range
identifier has not been used or the range expression where it has been used is
constant. Note that this check must be done at run time, if the coefficient
expression is not a constant.

Altogether, the compilation of an array variable constructor proceeds as
follows: the range declaration and the expression are compiled like ALL
statements. However, if an index expression occurs which is a linear range
expression (i.e. which is represented by a range object), restriction (1) is tested.
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After processing the entire expression within the array constructor, the
constructor denotes a legal subarray variable if the expression is represented by
a VAR node whose address is a range object; otherwise an error message is
raised. If any of the coefficients ck (1 # k # n) of this range object is zero, an
error message is raised. In the code generation phase, check code is generated
for all coefficients which are not constant − they must not be zero (except c0).
Then, the n+1 coefficient expressions and the n lengths are evaluated and
passed as arguments to the procedure. If the type of the designator within the
array constructor is an array too, possibly additional coefficients and lengths
must be passed.

It might be noteworthy that in Oberon [Wirth 1988a] passing of open arrays
is also permitted, however not in this general form. The main difference is that
in Oberon no explicit stride between two consecutive array elements may be
specified, as it is actually the case here: the stride in dimension k corresponds
to the coefficient ck of the function f. In Oberon it suffices to pass the base
address of the argument array and its lengths. The strides are then computed
from the lengths (cf. [Wirth 1992]).

3.8.2 Array Value Constructors

The use of array value constructors is restricted to arguments for the predefined
reduction functions SUM and PROD. Since these functions are known to the
compiler, inline code can be generated for them and no sophisticated
parameter passing mechanism is necessary. Thus, the problem of code
generation for array value constructors is actually the problem of code
generation for SUM and PROD. In the following the function SUM is
considered only; similar considerations apply to PROD too. It is assumed that
the summation order can be changed appropriately because addition is a
commutative operation. Unfortunately, for floating_point addition this is not
true and the result may be inaccurate especially if the operands differ largely in
magnitude. If the summation order cannot be changed for reasons of accuracy,
vectorization is not possible without specialized reduction instructions. In this
case, an ordinary loop must be used instead of SUM. A general SUM call may
be formulated as follows:

SUM([r = 0 .. l−1: E(r)])
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where r = 0 .. l−1 stands for an n_dimensional range declaration and E(r) for an
arbitrary expression possibly containing the range identifiers r = r1, r2, ... rn.
Roughly speaking, the same transformations can be applied to the expression
tree corresponding to E(r) as to syntax trees of ALL statements (cf. Section 3.7).
Let us consider the following incomplete ALL statement with the same range
declaration r = 0 .. l−1 and the same expression E(r) like in the SUM call above:

ALL r = 0 .. l−1 DO

... := ... + E(r)

END

For an ALL statement, these transformations yield the necessary information
required to construct a nest of n loops. For the incomplete ALL statement the
following loop nest is obtained (noted in an informal manner):

loop1
...

loopn
set VL;

ALL r' = 0 .. VL−1 DO

... := ... + E'(r')

END

end

...

end

The ALL statement can be completed by introducing an auxiliary array S of
length VLmax:

ALL r = 0 .. VLmax−1 DO

S[r] := 0

END;

loop1
...

loopn
set VL;

ALL r' = 0 .. VL−1 DO

S[r'] := S[r'] + E'(r')

END

end

...

end;

s := 0; i := VLmax;

WHILE i > 0 DO i := i−1; s := s + S[i] END
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Obviously, the execution of the n nested loops computes VL partial sums in the
array S (note that always VL # VLmax). Thus, the desired total sum s is obtained
by adding these partial sums at the end. The auxiliary array S can always be
held in a vector register, thus speeding up the computation significantly. Note
that this translation scheme relies on vector instructions that leave unused
vector elements untouched (for VL < VLmax). If the vector computer at hand
does not fulfill this requirement, a more complicated code pattern must be
generated. As an example an instruction sequence implementing the dot
product xWy = SUM([i = 0 .. n−1: x[i] * y[i]]) for two real arrays x and y is
shown:

; S0 address of x

; S1 address of y

; S2 length n

; S3 counter i (introduced by the compiler)

; S4 slice pointer x↑ (introduced by the compiler)

; S5 slice pointer y↑ (introduced by the compiler)

; V6 auxiliary vector S (introduced by the compiler)

; S7 auxiliary variable s (introduced by the compiler)

;

V6 := 0 ; initialize S

S4 := S0 ; initialize x↑

S5 := S1 ; initialize y↑

S3 := S2 ; initialize i

Loop1 S10 := S3 > 0 ; i > 0

jump Exit1 (˜S10) ; WHILE i > 0 DO

VL := S3 ; set vector length

V11 := M[1, S4] ; slice of x[i]

V12 := M[1, S5] ; slice of y[i]

V13 := V11 *F V12 ; slice of x[i] * y[i]

V6 := V6 +F V13 ; partial sum

S14 := VL ; get vector length of this iteration

S4 := S4 + S14; ; x↑ := x↑ + VL

S5 := S5 + S14; ; y↑ := y↑ + VL

S3 := S3 − S14 ; i := i − VL

jump Loop1 ; END

Exit1 S7 := 0 ; s := 0

S3 := VLmax ; i := VLmax
Loop2 S15 := S3 > 0 ; i > 0

jump Exit2 (˜S15) ; WHILE i > 0 DO

S3 := −1 + S3 ; i := i−1

S16 := V6[S3] ; S[i]

S7 := S7 +F S16 ; s := s + S[i]

jump Loop2 ; END

Exit2 ... ; result of SUM(...) in S7 (s)
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On a real machine, e.g. a Cray Y_MP [Cray 1988], this computation is
completely dominated by the vector instructions (marked with a vertical bar on
the left margin). Due to its two memory ports and its independent functional
units, two vector elements can be loaded, multiplied and added in a single
clock cycle by the Cray Y_MP. The scalar operations updating the slice pointers
and the loop counter are executed "in the wake of the vector instructions"; i.e.
by independent scalar functional units operating while the vector instructions
are executed. For long vectors (n 3 1000), the execution time for a dot product
is approximately n clock cycles. With a cycle time of 6ns, it is possible to obtain
an execution time of approximately 6ms for the dot product of two vectors of
length n = 106.

3.9 Index Checks

Index checks are required to guarantee that only array elements within the
index bounds of an array are accessed; i.e. an index expression must evaluate to
a positive integer smaller than the length of the subscripted array.

For index expressions denoting a scalar value, the index check can be
performed at compile time if both the index is a constant value and the length
of the array is known at compile time, i.e. if the array is not an open array. In all
other cases, an index check must be performed at run time. With the unified
representation of designators (Section 3.3), array accesses are not directly
recognizable anymore within the expression tree. A simple solution are explicit
index check nodes: an index check node has two operands, namely the index
expression and the length of the array (Figure 3.11.a). The result of an index
check operation is the checked index. In the code generation phase of a
compiler, an index check node is translated into a code sequence which raises
a trap if the index violates its index bounds (zero and the array length minus
one). Figure 3.11.b shows the expression tree with index check node
corresponding to the designator A[i].
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Figure 3.11 Index Check Nodes

For index expressions that are linear range expressions, i.e. that are represented
by range objects, the problem is more complicated. Since a range object
denotes not only a single value but a set of values, a correct index check must
test whether all these values are within the allowed index bounds. Note that a
simple insertion of an index check node as in the scalar case would disable the
transformation of linear expressions over ranges to linear expressions over the
ranges' coefficients (Section 3.5).

As explained in Section 3.4, a range object corresponds to an affine function
f N AFn(l) within the scope of an n_dimensional range declaration of length l.
The range object stands for all values ran(f). Thus, if the range object is used as
index of an array with length L, all values of ran(f) must be positive and smaller
than L; i.e. the condition (0 # min(f)) Y (max(f) < L) must hold. Because f N
AFn(l), using Theorem 3.2 (cf. Section 3.2) the minimum is min(f) = c0 −
c−W(l−1) and max(f) = c0 + c+W(l−1). In summary, for a given range object
containing the coefficients c0, c1, ... cn and representing a function f N AFn(l), an
index check must assert that

(0 # min(f)) Y (max(f) < L)

with min(f) = c0 − c−W(l−1)
and max(f) = c0 + c+W(l−1)

where l is the length of the range declaration and L is the length of the
subscripted array. Let us consider the following example:
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VAR

A: ARRAY 100 OF REAL;

...

ALL u = −4 .. 9, v = 0 .. 5, w = 10 .. 20 DO

... A[3*w − 2*v + u] ...

Within the ALL statement the array A is subscripted by a linear range
expression. The functions fu, fv and fw corresponding to the ranges associated
with the range identifiers u, v and w as well as the function f corresponding to
the linear range expression are:

Function

fu(x) = (1, 0, 0)Wx + (−4)
fv(x) = (0, 1, 0)Wx + 0
fw(x) = (0, 0, 1)Wx + 10
f(x) = (1, −2, 3)Wx + 26 ( = 3fw − 2fv + fu)

and the length vector is l = (14, 6, 11). To check whether the range expression
violates the index bounds of the array A or not, it is necessary to compute
min(f) and max(f). With c = (1, −2, 3), c0 = 26 and Theorem 3.2 the following
values are obtained:

min(f) = c0 − c−W(l−1) = 26 − (0, 2, 0)W(13, 5, 10) = 16
max(f) = c0 + c+W(l−1) = 26 + (1, 0, 3)W(13, 5, 10) = 69

Because (0 # 16) Y (69 < 100) the index bounds are not violated by the range
expression. In general, this computation cannot be performed completely at
compile time, since either the coefficients ck (0 # k # n) or the lengths lk (1 # k
# n) may not all be constant. However, note that partial index checks are often
possible, since for the computation of min(f) only the lengths lk are required for
which the corresponding ck is negative (for positive ck's the value ck

− is zero
and also ck

−(lk−1) = 0, independent of the value of lk). A similar relationship
holds for max(f) and positive ck's.

If an index check cannot be performed completely at compile time, it should
be performed at run time. As illustrated in the example before, a range object is
only valid as array index, if it fulfills the constraint (0 # min(f)) Y (max(f) < L)
imposed by the index check for the function f specified by the range object.
Such a constraint can be represented by a constraint node associated with a
range object (Figure 3.12).
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Figure 3.12 Range Constraints

Thus, if a range r is to be used as an index and the index check cannot be
performed completely at compile time, the range r is copied and a constraint
node C is associated with its copy r'. It is vital to copy r, because it might be
shared by different expression trees (cf. Section 3.5). The constraint node
contains a reference to the constrained range r and thus to the coefficients of the
specified function f as well as a reference to the length L of the subscripted
array. The length l of the range declaration is known within the scope of the
declaration and is always the same for all range objects. Hence, it is not
necessary to reference it by the constraint node.

If a range r is used within a range expression E(r), possibly producing a new
range object r', a constraint node C of r must be adopted, because the range
object r' representing E(r) is also valid only, if the constraint(s) of its operand r
are observed. If two possibly constrained range objects r1 and r2 are added, the
resulting range object r' must obey both the constraint(s) C1 of r1 and C2 of r2.
Thus, a range object may be associated with an entire list of constraints to be
observed (Figure 3.13). Such constrained range objects occur only, when
subscripting arrays. As explained earlier (Section 3.5), subscripting an
n_dimensional array A with n ranges r1, r2, ... rn, A[r1, r2, ... rn], implicitly leads to
an expression e = a0 + r1*s1 + r2*s2 + rn*sn where a0 is the address of A and
the sk's denote the strides in dimension k. Assumed that index checks cannot
be performed at compile time, for each index rk a new constraint node Ck is
generated. Adding all terms of the expression e leads again to a range object,
and this range object is associated with the list of all these constraint nodes Ck
(1 # k # n). Note that also constraint nodes must be copied sometimes,
because they may be shared by different range objects: in Figure 3.13 the
constraint node C1 must be copied (C1') for the constraint list of r', whereas the
constraint node C2 may be shared.
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Figure 3.13 Addition of Constrained Ranges

Thus, after processing an ALL statement or an array constructor, each range
object within the expression tree(s) may have a list of constraint nodes
associated with it which denote the range constraints to be observed. In case of
an ALL statement, all these constraint nodes are simply collected during the
traversal of the ALL statement (e.g. as a first step in the SubstituteRange
procedure, cf. Section 3.7.2) and held in an additional list of constraint nodes
associated with the ALL statement. In the code generation phase, first index
check code is generated for each of these constraint nodes (using Theorem
3.2). Then code is generated for the ALL statement, as explained in Section 3.7.
Note that this approach is not correct if array elements are accessed under
certain conditions only, e.g. in conditional expressions. In this case no
constraint node must be associated with the range object in question but an
index check node is introduced instead. Since no vector instructions but scalar
code only can be generated for conditional expressions containing and and or

operations, the index check node also can be translated conventionally. The
arguments of the predefined function SELECT are always evaluated
unconditionally.

In case of a legal array variable constructor, only a single range object
remains after processing the array constructor. If this range object is
constrained, in the code generation phase first index check code is generated
for the constraints, and then parameter passing code is emitted as explained in
Section 3.8.



4 Related Work

This chapter comprises a survey of other programming languages which are
especially concerned with array handling or vector processing. This survey must
necessarily be incomplete and merely should give some idea of other
approaches but is not intended to cover these languages in detail. Fortran 77
and Fortran 90 are not mentioned here, they have been discussed in Chapter 1.

CFD. In order to make better use of the Illiac IV hardware, the programming
language CFD was developed at NASA Ames Research Center [Stevens 1975].
CFD allows the programmer to fully control the underlying features of the
hardware. No specific attempt was made to keep the language machine
independent. The language itself strongly resembles Fortran but provides
specific vector operations driving the 64 processing elements (PE) of the Illiac
IV. Expressions are translated to PE instructions which operate on 64 elements
even if only scalar values are involved. Thus, the programmer is forced to "think
parallel" if maximal performance is desired. Two compilers were built, one
translating CFD into relocatable machine code for the Illiac IV and one
translating CFD into Fortran. CFD is one of the first languages designed
explicitly for array processors. From the programmer's point of view, CFD
provides operations on vectors that always have length 64. Operations on
longer vectors have to be coded manually. With respect to this, CFD is
comparable to SL/1 (see below).

IVTRAN. IVTRAN is an extension of Fortran designed for the Illiac IV computer
[Erickson 1975]. Normally IVTRAN programs are produced by the Fortran
compiling system for the Illiac IV [Millstein 1975] and hence serve as a kind of
intermediate program representation during Fortran compilation. IVTRAN
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contains all features of "standard Fortran" (i.e. an amalgam of IBM and CDC
Fortrans in 1975) and a few extensions in order to efficiently use the features of
the underlying hardware. The DO FOR ALL statement is used to specify parallel
operations on array elements. For example, using DO FOR ALL the following
statements compute the square roots of the absolute values of all elements of a
3 x 7 x 10 array A:

DO 10 FOR ALL (I, J, K) / [1 ... 3] .C. [1 ... 7] .C. [1 ... 10]

IF (A(I, J, K) .LT. 0.0) A(I, J, K) = −A(I, J, K)

A(I, J, K) = SQRT(A(I, J, K))

10 CONTINUE

Assignment statements enclosed within DO FOR ALL statements are executed
in parallel for all values specified by the index set. The index set is the set of all
n_tuples of integers specified in the header of the DO FOR ALL statement (in
our example the index set comprises the 3_tupels (I, J, K) with I N {1, 2, 3}, J N
{1, 2, ... 7} and K N {1, 2, ... 10}). This stands in contrast to Oberon_V, where the
assignments enclosed in ALL statements may be executed in parallel but are
not required to do so.

The Illiac Fortran compiling system comprises three sections: the "paralyzer",
the compiler and a support package. The paralyzer analyzes conventional
Fortran programs and tries to reveal potential parallelism by inspecting the
innermost DO loops. As a result an IVTRAN program is produced using the
special IVTRAN features if possible. In a next step the IVTRAN program is
compiled in a rather traditional fashion and Illiac object files are generated.
IVTRAN is the ancestor of many of todays Fortran dialects which are enriched
by new features in order to give the programmer the possibility to specify
parallelism in programs.

Vienna Fortran. Vienna Fortran [Zima et. al. 1992] is an experimental extension
of Fortran 77 [Brainerd 1978] oriented towards the programming of massively
parallel machines with distributed memory. One of the main problems occuring
when programming such machines is the distribution of arrays to different
processing nodes. Vienna Fortran provides special mechanisms to describe
such array layouts and to compute the addresses of the processing nodes
which hold particular array elements or subarrays. Despite the conventional
Fortran 77 statements and some Fortran 90 extensions [Metcalf 1987], Vienna
Fortran provides a FORALL loop which is similar to the ALL statement in
Oberon_V. A FORALL loop "allows the user to assert that different instantiations
of the loop body are independent and can be logically executed in parallel"; the
independence is not checked by the compiler. On a multi_processor
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architecture, each "iteration" of the loop can be executed on another processor.
Since the execution of a loop iteration must not change any data items used by
another iteration, all non_local data used by a particular iteration can be
gathered before the start of the iteration. Similarly, non_local data items
computed in a particular iteration can be communicated back to other
processors after the end of the iteration. This allows the compiler to optimize
the communication overhead required for the loop. Thus, the emphasis lies in
the parallelization of statements by distribution. Currently the language is still
under development and only research compilers are available.

APL. The programming language APL, sometimes also called "Iverson Notation"
is based on the work of K. E. Iverson [Iverson 1962]. APL is a highly concise
language designed to deal with arrays which are the only data structure
available (some newer APL implementations also provide other data structures
like packages [Berry 1979]). Scalar values are considered as arrays with rank
(dimension) zero. APL programs consist of a sequence of expressions and some
kind of computed goto's; assignment statements are considered as expressions.
Expressions have arrays as operands and evaluate to arrays. By defining new
functions, a program may be structured.

APL is famous for its powerful built_in functions and operators which are
denoted by special characters. All functions are at most dyadic and always
right_associative. There are scalar functions and non_scalar functions: the former
are defined on scalar arguments and operate element_wise when applied to
arrays, the latter are defined on arrays only. The right_hand side of an
assignment is always evaluated first and then assigned to the variable on the
left_hand side. Derived functions may be built by using (built_in) functions as
arguments of operators. Function arguments are also arrays. In order to pass a
subarray, an appropriate function is used to retrieve the desired subarray which
is then passed as argument (which requires to copy the array in general).

APL is defined considerably concise and highly consistent both syntactically
and semantically. Certain implementations use mathematical properties of APL
expressions in order to speed up execution [Abrams 1970]. APL was the first
high_level language for array processing and had a significant impact on other
languages and systems. The new Fortran standard Fortran_90 [Metcalf 1987]
adopts the idea of applying scalar operations element_wise on arrays. The
Matlab system [MathWorks 1987] is an interactive system that pursues quite a
similar philosophy (while using a more conventional syntax). For non_array
oriented applications however it seems difficult to use APL: expressions are
probably too powerful but on the other hand control structures are missing.
Furthermore, if no restrictions are applied, APL cannot be compiled completely
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(because of a special function which interprets a string argument at run_time)
and hence an interpreter is required.

Glypnir. Glypnir is a programming language developed at the University of
Illinois at Urbana_Champaign for the Illiac IV computer [Lawrie 1975]. Except
that Glypnir's syntax is Algol_based, it is similar to CFD (see Section 4.1). In
order to obtain code which is as efficient as possible, it was decided not to hide
the machine architecture to the programmer but to provide full control over the
hardware. The machine architecture is mainly reflected in two categories of
variables, namely "CU variables" and "PE variables". The former hold scalar
values which are to be manipulated by the Control Unit of the Illiac IV. The
latter denote vectors or "swords" containing 64 elements to be processed by
one of the 64 Processing Elements of the machine. Thus, expressions
containing PE variables denote expression on vectors of length 64. Operations
on longer vectors must be translated manually into a sequence of operations on
swords. Glypnir is block structured and each block may have its own local
storage. Subroutines resemble Algol procedures but they cannot be recursive
and their arguments are called by value.

SL/1. The programming language SL/1 was developed at NASA Langley
Research Center for the CDC Star_100 computer [Basili 1975]. The design of the
language was determined by a few strong design goals: the language should be
as small as possible, it should be easy to implement in order to be able to
develop a compiler with minimal effort, it should force the user to express
algorithms such that the hardware is used efficiently, and it should be
extensible if necessary. As a consequence, the basic data types available in SL/1
can be mapped directly to the underlying hardware and most language
operations can be implemented by a single machine instruction of the Star_100
computer. Beside of the scalar types (short) real, (short) integer and logical the
corresponding vector types (short) real vector, (short) integer vector and logical

vector were defined and considered as arrays consisting of a fixed number of
elements of the specified scalar type. The only structured type which can be
defined by the programmer is the (multi_dimensional) array, with the restriction
that each element must be a vector or a string (a vector of dynamic length). The
set of available operators is considerably large and consists of almost all
operations that can be translated directly into a single machine instruction plus
whatever is necessary to handle SL/1 data types. As far as possible single
character symbols were chosen for operators. The fact that the Star_100
hardware offers an instruction to store elements of a vector depending on bits
of a bit vector lead to a tryadic assignment statement:
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(C, Z) := A + B

where C is the result vector and Z a bit vector controlling the assignment of
individual vector elements. The available control structures in SL/1 are more
conventional and include the WHILE, REPEAT, CASE, IF and FOR statement. The
approach used in the design of SL/1 is quite radical and leads to a language
that is inherently hardware dependent. In some sense SL/1 can be regarded as
high_level assembler language.

Actus. The programming language Actus [Perrott 1979, 1983] is an offspring of
the Pascal language family [Wirth 1971]. Actus is one of the first modern
languages explicitly designed to ease array and vector processing. The key
concept of the language is the notion of the extent of parallelism (eop): With
each data structure based on an array and to most of the control structures an
eop is associated. The eop denotes the set of array indices for which operations
are to be applied in parallel. If a set of array elements is going to be processed
in parallel, this must already be stated in the array declaration. For example, the
variable declaration

VAR

A: ARRAY [1 : 100, 1 .. 100] OF REAL;

introduces a matrix for which every column may be accessed in parallel, i.e.
which has a (maximum) eop of 1:100. In the declaration the dimension in
which the elements may be accessed in parallel is denoted with a colon; for
some technical reason this is only possible for a single dimension. In general,
A[1 : 100, j] will access the complete j_th column of this array, and A[i, 1 : 100]
will access the complete i_th row. Such a column or row is then called a parallel

array. All arithmetic operators are extended such that they accept scalar values
but also parallel arrays; e.g. to scale all elements of the j_th column by a scalar
value c the following expression is used

A[1 .. 100, j] * c

Obviously, the number of elements denoted by the two operands must be the
same (with exception of scalar operands) otherwise an error occurs.
Furthermore it is necessary that the eop's match. For example, the expression

A[1 .. 10, i] + A[2 .. 11, j]
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is defined to be incorrect and must be rewritten to

A[1 .. 10, i] + A[1 .. 10 shift 1, j]

Two allignment operators shift and rotate are provided to handle this problem.
Furthermore it is possible to declare index sets (to be used subsequently as
subscripts for parallel arrays) and parallel constants similar to parallel arrays.

When a parallel array is used within a statement, the extent of parallelism of
the array implicitly denotes the eop of the statement. Using the within
statement, it is possible to specify the eop explicitly for an entire statement
sequence. A hash mark (#) is used to denote the eop:

WITHIN 1 : 100 DO

BEGIN

A[#, i] := A[#, j] * c

END

In case of an assignment statement, the expression on the right_hand side is
evaluated and assigned in parallel for all array elements specified by the eop.
The required dependence analysis is simplified by the conditions required for
the eop's and the information provided by the shift and rotate operators. Some
statements set the eop implicitly, for example the IF statement:

IF A[1 : 10, i] > 0 THEN A[#, i] := 0

ELSE A[#, i] := 1

The guard of the IF statement is evaluated and yields a set of indices for which
the guard is true. This set is then used as the eop for the statements in the
THEN part. The set of indices for which the guard yields false is used as the eop
in the ELSE part. Similar rules are used for other control structures.

Parameter passing is extended such that it is possible to pass conformant

arrays: the array bounds of formal parameters need not be known at compile
time but are set at run time when passing the actual parameters. For example, a
procedure P with heading

PROCEDURE P (VAR a: ARRAY [beg .. end, extent] OF REAL);

expects a two_dimensional (sub_)array argument. The identifiers beg and end

take on the values of the first and last index in the first dimension of the passed
array while extent takes on the eop of the second dimension (i.e. the rows of
the passed array must be accessible as parallel arrays). The result type of a
function may be a 1_dimensional array.
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In contrast to Actus, in Oberon_V only independence of (assignment)
statements can be expressed. This independence property allows for parallel
execution but does not require it. In Actus, processing parallel data requires
parallel execution or at least emulation of it.

Matlab. Matlab is "a high_performance interactive software package for scientific
and engineering numeric computation" [MathWorks 1987]. Matlab (which
stands for matrix laboratory) was originally written to provide easy access to
matrix software packages such as Linpack [Dongarra 1979]. It evolved over
several years and has become a standard tool in many areas. Matlab is an
interactive system and its basic data structure is − as in APL − the array.
Matrices may be entered and used directly in expressions without any form of
declaration; hence Matlab acts like a desk calculator and is perfectly suited for
experimenting. Powerful matrix decomposition algorithms are directly
accessible by builtin functions. For example, the following statements compute
the LU factorization of a 3x3 matrix A, assign its inverse A−1 to X and calculate
its determinant in D (no output is shown here):

A = [1 2 3; 4 5 6; 7 8 9]

[L, U] = lu(A)

X = inv(A)

d = det(A)

Conventional control flow statements (such as a FOR statement) make Matlab
a high_level matrix language. Using script and function files a program can be
structured.





5 An Oberon_V Compiler

A compiler for a new language L serves both as a proof that an implementation
of the language is feasible and as a tool for practical applications of L and
hence the exploration of its usefulness. To be useful or real [Cardelli 1989], a
language L should be theoretically and practically complete. While the former
condition can be expressed as Turing completeness, i.e. the ability of the
language to express every computable function, the latter condition is harder to
quantify. Due to Cardelli, practical completeness is "the ability of a language to
conveniently express its own (a) interpreter; (b) translator; (c) run_time support;
(d) operating system". Since Oberon_V essentially provides the same features
like Oberon [Wirth 1988a], and Oberon has been used to implement its
supporting Oberon System [Wirth 1988b], it should be possible to fulfil even
criterion (d) by Oberon_V. However, currently only a minimal form of run_time
support has been implemented using Oberon_V.

The Oberon_V compiling system consists of the compiler OV, an object_file
decoder and an interface browser. OV is a cross_compiler for the Cray Y_MP
written in Oberon. It runs under the Oberon System and generates relocatable
Cray object files. The decoder − a necessary prerequisite for a compiler writer
embarking on the implementation of a back_end for a new target architecture −
allows inspecting ordinary Cray object files. A dual role is played by the browser,
which is used to extract interface descriptions à la Modula_2 [Wirth 1985] out
of compiler generated symbol files (cf. Section 5.2.5). The browser was inspired
by a similar tool in the Oberon System and proved to be quite helpful for
programming [Templ 1989].

In this chapter the general outline of the OV compiler is described. Section
5.1 explains the module structure of the compiler. In Section 5.2 the
intermediate data structure produced by the front_end is presented in detail. A
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rough survey of the internals of the back_end is given in Section 5.3. Finally,
Section 5.4 summarizes the main trouble spots of the Cray Y_MP instruction set.
Oberon program extracts have been translated to Obreon_V.

5.1 Modularization

The Oberon_V compiler is a two_phase compiler. In the first phase the source
text is analyzed by a recursive_descent parser, and an intermediate data
structure − a symbol table and associated syntax trees − representing the
program is built. In the second phase the intermediate data structure is
traversed and code is generated. Two disjoint sets of modules can be assigned
to each phase: the front_end implements the first phase and is designed to be
machine independent, whereas the low_level code generator is constituted by
the back_end modules which are machine dependent by their very nature. Both
parts are held together by the module OV which implements the user interface
represented by a single command called OV.Compile. OV calls the front_end and
passes the generated intermediate data structure, which is the only parameter,
to the back_end. Since the front_end is machine independent, it may also be
used either as a stand_alone application, e.g. for syntax and type checking of
Oberon_V modules, or as a basis for other back_ends.

A portable Oberon_2 compiler (OP2) with a similar structure has been built
before [Crelier 1990]. However, only relatively simple parts of the front_end
could be reused for Oberon_V, namely the scanner and the parser. Due to
differences in the language and a lower level of abstraction used in the
intermediate data structure of the Oberon_V compiler, many parts had to be
rewritten. Hence, it was decided to construct a new compiler from scratch;
thereby applying the experience gained with OP2. Nevertheless, the overall
structure of the two compilers OP2 and OV is much the same, with a notable
exception: no machine_level virtual code is generated by OP2 (see below).
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Figure 5.1 Modularization

Figure 5.1 illustrates the structure of the compiler, with the modules ordered
according to their abstraction from bottom to top (with the highest abstraction
on top) and separated into front_end and back_end.

A short description shall give a rough idea of the translation process of an
Oberon_V program: A source text to be compiled is decomposed into a
sequence of lexical units, called symbols or tokens, by means of the scanner
OVS. The syntactic structure of the token stream is analyzed by the parser OVP
which also builds the intermediate data structure. The required data types and
procedures are provided by the table handler OVT. OVT acts also as an interface
between front_end and back_end and hence is the only module that is imported
by almost all other modules. When the source text has been analyzed without
detecting any errors, the generated data structure is passed to the code
generator OVC. OVC traverses the data structure and generates virtual code for a
virtual machine by means of the procedures provided by OVE. This virtual code,
handled by the module OVV, allows for some optimizations, namely common

subexpression elimination and instruction scheduling. The virtual code is then
translated into Cray machine code. Finally, the object code and some tables
holding information for the linker are assembled and a relocatable Cray object
file is generated (OVO).
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5.2 Intermediate Program Representation

The main task of the front_end is to generate an intermediate program
representation of a compilation unit. This intermediate data structure provides
the basis for all the transformations explained in Chapter 3. In the following, it
is not explained how this data structure is built from a textual representation of
a program, but it is assumed that the reader is familiar with the standard
techniques for scanning and parsing a program text according to its defining
grammar (see e.g. [Wirth 1992], Chap. 12). It remains to say that the front_end
module OVP is a simple recursive descent parser, which constructs the
intermediate data structure by means of the procedures provided by module
OVT.

The intermediate data structure consists of the symbol table information and
associated syntax trees representing statement sequences of procedure and
module bodies. The symbol table represents all declarations, i.e. all identifiers
and their associated objects (cf. Section 5.2.1). Identifiers are only visible within
their scopes. Since scopes are properly nested in Oberon_V, they are best
managed using a stack. During parsing, the visible identifiers can be found by
searching the scope stack, starting with the top scope. Using Oberon_V, the
primary data structures and operations of the table handler OVT are described
by the following definitions:

TYPE

Scope = RECORD

prev: ↑Scope;

first: ↑Ident

END;

Ident = RECORD

next: ↑Ident;

name: ARRAY 32 OF CHAR;

exported: BOOLEAN;

bound: ↑Object;

usage: INTEGER (* usage = 0 <=> not used *)

END;

VAR

universe: ↑Scope;

PROCEDURE NewScope (VAR scope: ↑Scope; prev: ↑Scope);

PROCEDURE Insert (scope: ↑Scope; VAR name: ARRAY OF CHAR; VAR id: ↑Ident);

PROCEDURE This (scope: ↑Scope; VAR name: ARRAY OF CHAR): ↑Ident;
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New scopes are generated by means of the procedure NewScope; the argument
prev denoting the previous scope allows to build a stack of scopes. For every
module, procedure, record or range declaration a new scope is opened. For
simplicity all identifiers are held in a linear list of Ident nodes within a scope.
With Insert a new identifier is appended to this list, and at the same time it is
checked whether the identifier has been declared before in the same scope
(and if so, an error message is raised). Each Ident node contains information
about the next identifier in the list, the identifier name, whether this name be
exported or not and which object is associated with or bound to the identifier. If
an identifier is used to refer to a particular object, the identifier node and hence
the associated object are retrieved using the This function. The universe scope is
used as the predecessor of all module scopes; it contains a collection of
predefined objects.

The usage field provides a simple heuristic measure for the dynamic frequency

of usage of an identifier and may be used to allocate frequently accessed
variables in registers (cf. Section 5.3.1). Whenever an identifier is used in the
program text, its usage field is incremented taking the current nesting level of
its surrounding loops into account (and also IF, CASE and ALL statements). The
value zero indicates that the corresponding identifier has not been used at all
within its defining procedure or module.

5.2.1 Representation of Objects

In Oberon_V there are constant, type, variable, procedure and range
declarations. In each declaration an appropriate object is introduced and
associated with an identifier. These special objects are naturally expressed as
type extensions of the base type Object. In contrast to some Oberon compilers,
where only a single object type is used to represent a similar variety of objects,
i.e. where the information of all kinds of objects is "flattened" and packed into a
single record type [Wirth 1992][Crelier 1990], using type extensions has the
advantage of being more readable and secure. The additional assertions (type
guards) required in the compiler source provide valuable information for the
programmer who is interested in the correctness of the implementation, but
they do not seem to slow down execution significantly. It is convenient to
introduce a few additional objects, namely objects representing parameters,
record fields, predefined (standard) procedures and modules (Address and
Range objects as well as Stat nodes are introduced later). All objects have a type
(typ) associated with them, since Oberon_V is a strongly typed language (cf.
Section 5.2.2).
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TYPE

Object = RECORD

typ: ↑Struct

END;

Const = RECORD (Object)

int: INTEGER;

re, im: REAL;

...

END;

Type = RECORD (Object) END;

Var = RECORD (Object)

adr: ↑Object

END;

Par = RECORD (Var);

var: BOOLEAN;

parAdr: ↑Address

END;

Field = RECORD (Object)

offs: ↑Const

END;

Proc = RECORD (Object)

body: ↑Stat;

adr: ↑Address

END;

StdProc = RECORD (Object)

f, nofPars: INTEGER

END;

Module = RECORD (Proc)

fingerprint: INTEGER

END;

New objects are created and initialized by a set of initialization procedures (not
shown here). Parameters (Par) are regarded as special variables (Var). They may
be either variable or value parameters, determined by the value of the field var.
Besides the normal variable address (adr), parameters also have a parameter
address (parAdr), which corresponds to the address seen by a caller of the
corresponding procedure (see also Figure 5.4). The position of record fields is
determined by their offsets (offs) relative to the record address. This offset
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constant is used in expression trees representing field selections (cf. Chapter 3,
Figure 3.2). Procedure objects contain a procedure address (adr) as well as a
reference to a statement sequence, i.e. a syntax tree representing the body of
the procedure (cf. Section 5.2.3). The scope associated with a procedure can be
retrieved from the procedure's type (cf. Section 5.2.2). Finally, predefined
procedures and functions generating in_line code are represented as StdProc

objects which are held in the universe scope. For Module objects, the reader is
referred to Section 5.2.4.

It is convenient to represent also expressions as (anonymous) objects. Using
an Expr node, all kinds of expressions can be represented in form of expression
trees. Since expressions are extensions of ordinary objects, they can also be
used as addresses for variables, as indicated in Chapter 3. Note that such
expression objects must not be confused with items used in the back_end:
whereas a single object statically represents an object (or expression) of a
program, an item may represent several different objects during its lifetime (see
also Section 5.3.1).

CONST

not = 1; abs = 2; ord = 3; ... (* unary operations f *)

add = 20; sub = 21; mul = 22; ... (* binary operations f *)

TYPE

Expr = RECORD (Object)

f: INTEGER;

x, y: ↑Object

END;

PROCEDURE Deref (VAR x: ↑Object);

PROCEDURE Index (VAR x: ↑Object; index: ↑Object);

PROCEDURE Select (VAR x: ↑Object; VAR fieldName: ARRAY OF CHAR);

PROCEDURE Not (VAR x: ↑Object);

PROCEDURE BinOp (VAR x: ↑Object; y: ↑Object; f: INTEGER);

PROCEDURE ElemTest (VAR x: ↑Object; set: ↑Object);

PROCEDURE TypeTest (VAR x: ↑Object; type: ↑Object; guard: BOOLEAN);

PROCEDURE StdFuncCall

(VAR x: ↑Object; proc: ↑StdProc; VAR args: ARRAY OF ↑Object; nofArgs: INTEGER);

Expression trees are constructed using a small set of procedures, which usually
accept one or two argument expression trees x and y and then return a new
expression tree in x. Selectors are handled with the procedures Deref, Index,
Select and TypeTest (with guard = TRUE). These four procedures perform the
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necessary type checks and conversions and generate expression trees as
explained in Section 3.3. Expression trees for binary operations are constructed
using the BinOp, ElemTest and TypeTest procedures. Not is used for the unary
operation ˜. Other unary operations such as negation are regarded as binary
operations with neutral elements (e.g. −x = 0 − x). Calls of predefined functions
are handled by the StdFuncCall procedure, which also performs the necessary
checks. Note that no special object extension is used to represent predefined
functions but they are considered as (named) unary and binary operations. As
an example for the recursive construction of expression trees, the OVP
procedure parsing an Oberon_V Expression is showed (cf. Appendix A.10):

PROCEDURE SimpleExpression (VAR x: ↑OVT.Object); ...

PROCEDURE Expression (VAR x: ↑OVT.Object);

VAR y: ↑OVT.Object; sym: INTEGER;

BEGIN SimpleExpression(x);

IF (OVS.eql <= OVS.sym) & (OVS.sym <= OVS.is) THEN sym := OVS.sym;

OVS.Scan; SimpleExpression(y);

CASE sym

OF OVS.eql, OVS.lss THEN OVT.BinOp(x, y, sym)

OF OVS.neq THEN OVT.BinOp(x, y, OVS.eql); OVT.Not(x)

OF OVS.leq THEN OVT.BinOp(y, x, OVS.lss); OVT.Not(y); x := y

OF OVS.gtr THEN OVT.BinOp(y, x, OVS.lss); x := y

OF OVS.geq THEN OVT.BinOp(x, y, OVS.lss); OVT.Not(x)

OF OVS.in THEN OVT.ElemTest(x, y)

OF OVS.is THEN OVT.TypeTest(x, y, FALSE)

END

END

END Expression;

Objects associated with identifier nodes and objects used in expression trees
may be shared. Thus, after declaring a variable x, i.e. after introducing an
identifier node for x and associating a variable object with it, this object is used
within an expression tree whenever the variable x occurs within an expression
(Figure 5.2). It might be noteworthy, that in the comparable Oberon compiler
OP2 [Crelier 1990], expression trees are represented by special nodes and for
each object referred to within an expression tree, an additional node referring to
this object is required. Since variables (and constants, etc.) are almost always
leaf nodes (cf. Section 3.3, Figure 3.1) and since the number of leaf nodes is
approximately one half of the number of all nodes within a binary expression
tree, object sharing means a significant saving of memory space.
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*

+

Const 3

VAR

x, y: INTEGER;

BEGIN

... x*3 + y ...

x*3 + y

prev

next next
Ident x Ident yScope

Scope

Var

Var

top scope

Figure 5.2 Sharing of Objects by Symbol Table and Expression Tree

Ranges are also extensions of Objects. As explained in Chapter 3, each range
object contains the coefficients (coeff) of the affine function it represents. The
lengths of all ranges introduced by a range declaration (i.e. the length of the
range declaration) are held in a Length record. It is convenient to have a
reference (length) from each range object to this length record. Since range
objects may occur as indices, they may be subject to index constraints. Thus, to
each range object, a list of Constraint nodes (cnstr) may be associated. Each
constraint is clearly determined by a range and the length of the subscripted
array (cf. Section 3.9). For a snapshot of the symbol table state after processing
a range declaration, the reader is referred to Figure 3.4 in Chapter 3.

CONST

MaxNofDims = 4;

TYPE

Constraint = RECORD

next: ↑Constraint;

range: ↑Range;

length: ↑Object

END;

Length = RECORD

length: ARRAY MaxNofDims+1 OF ↑Object;

nofDims: INTEGER

END;
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Range = RECORD (Object)

coeff: ARRAY MaxNofDims+1 OF ↑Object;

cnstr: ↑Constraint;

length: ↑Length

END;

PROCEDURE RangeLen (VAR len: ↑Object; lo, hi: ↑Object);

PROCEDURE NewRange (VAR ran: ↑Object; c0, ci: ↑Object; i: INTEGER; l: ↑Length);

The length of a (1_dimensional) range is computed with the procedure
RangeLen using the lower and upper bound of the range. RangeLen performs
also a minor optimization: For the frequent case of ranges of the form a .. b−1,
an expression tree corresponding to the expression b−a (or b, if a = 0) instead
of ((b−1) − a) + 1 is returned. A new range object is created with NewRange

which uses the coefficients c0 and ci as well as a reference to the length (l) of
the range declaration (cf. Section 3.4).
As explained in Section 3.5, ranges are treated in a special way when they are
involved in linear expressions, i.e. as operands of the operations +, −, and *. For
each of these operations special procedures Add, Sub and Mul exist in OVT
which perform the necessary transformations. Note that these (internal)
procedures are used by the BinOp procedure as well as the procedures Deref,
Index and Select (since also address computations are treated uniformly).
Indeed, almost all additional effort required to handle range expressions is
covered by these three procedures. Below the full procedure Add is shown
without further explanations. The procedures for − and * are quite similar
(NewInt, NewExpr, Clone and CollectConstraints are frequently used auxiliary
procedures).

PROCEDURE NewInt (VAR x: ↑Object; typ: ↑Struct; int: INTEGER);

VAR c: ↑Const;

BEGIN NEW(c); c.typ := typ; c.int := int; x := c

END NewInt;

PROCEDURE NewExpr (VAR x: ↑Object; y: ↑Object; typ: ↑Struct; f: INTEGER);

VAR e: ↑Expr;

BEGIN NEW(e); e.typ := typ; e.f := f; e.x := x; e.y := y; x := e

END NewExpr;

PROCEDURE Clone (VAR r: ↑Range; from: ↑Range);

BEGIN NEW(r); r.typ := from.typ;

ALL i = 0 .. MaxNofDims DO r.coeff[i] := from.coeff[i] END;

r.cnstr := from.cnstr; r.length := from.length

END Clone;
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PROCEDURE CollectConstraints (VAR c: ↑Constraint; d: ↑Constraint);

VAR q: ↑Constraint;

BEGIN

WHILE d # NIL DO

NEW(q); q.next := c; c := q;

q.range := d.range; q.length := d.length;

d := d.next

END

END CollectConstraints;

PROCEDURE Add (VAR x: ↑Object; y: ↑Object);

VAR h: ↑Object; r, ry: ↑Range; i: INTEGER;

BEGIN

ASSERT((x.typ = y.typ) & ((x.typ = intTyp) | (x.typ = adrTyp)));

IF x IS Const THEN h := x; x := y; y := h END;

IF x IS Const THEN NewInt(x, x.typ, x{Const}.int + y{Const}.int)

ELSIF ˜(y IS Const) | (y{Const}.int # 0) THEN

IF x IS Range THEN h := x; x := y; y := h END;

IF x IS Range THEN

Clone(r, x{Range}); ry := y{Range}; i := ry.length.nofDims;

WHILE i >= 0 DO Add(r.coeff[i], ry.coeff[i]); DEC(i) END;

CollectConstraints(r.cnstr, ry.cnstr); x := r

ELSIF y IS Range THEN Clone(r, y{Range}); Add(x, r.coeff[0])

ELSE NewExpr(x, y, x.typ, add)

END

END

END Add;

Last but not least, two additional extensions of Objects are required in OVT:
FuncCall and Address objects. While the former are used to represent function
calls within expression trees (cf. Section 5.2.3), the latter represent machine
specific addresses and hence provide an interface to the compiler back_end.
Address objects usually are extended in a back_end by machine specific
attributes (e.g. register numbers or memory addresses). They are created by a
back_end procedure to be installed in the global variable NewAddress.

TYPE

FuncCall = RECORD (Object)

proc: ↑Object;

args: ↑Assignment

END;

Address = RECORD (Object)

level: INTEGER;

leaf: BOOLEAN

END
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VAR

NewAddress: PROCEDURE (level: INTEGER): Address;

The scope level of an address is stored in its level field; the level zero indicates
an address of a global variable (or procedure). If an address is used within an
address computation or if it is referred to from within a nested scope, the leaf

field of the address object is set to FALSE. This information may be used by a
back_end to decide whether a variable might be held in a register or whether it
must be held in memory.

5.2.2 Representation of Types

Each object is associated with a Struct node which describes the structure of
the object's type. Like objects, different structures are best represented by type
extensions of the base type Struct. If a type has a name, the corresponding
Struct node contains a reference to the associated identifier (id). The size of a
type is the number of storage units required for variables of this type. This value
is inherently machine specific and hence is computed by means of the
procedure SetSize installed by the back_end. Arrays and records are structured
types and thus represented by extensions of the type Structured. This additional
extension level allows for convenient tests in the compiler (e.g. "IF typ IS
Structured THEN ...") and for more expressiveness (e.g. a pointer's base type
must always be structured). Structured types also may have a type descriptor's
address (desc) associated with them which is used to implement type guards
and type tests (cf. [Cohen 1991]).

TYPE

Struct = RECORD (Struct)

size: ↑Const;

id: ↑Object

END;

Structured = RECORD (Struct)

desc: ↑Address

END;

Array = RECORD (Structured)

length: ↑Const; (* length = NIL <=> open array *)

elemTyp: ↑Struct

END;
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Record = RECORD (Structured)

baseTyp: ↑Record;

scope: ↑Scope

END;

Pointer = RECORD (Struct)

pointeeTyp: ↑Structured

END;

Procedure = RECORD (Struct)

scope: ↑Scope;

resTyp: ↑Struct (* resTyp # NIL <=> function *)

END;

VAR

SetSize: PROCEDURE (typ: ↑Struct);

Arrays are determined by their length and the element type. Records are
described by their base type and their record fields, which are collected within
the record scope. If a record type R1 is an extension of a record R, the prev field
of the scope record associated with R1 points to the scope record associated
with R (Figure 5.3). Thus, also record fields can be retrieved using the This

function mentioned in the beginning.

Example:

TYPE

R = RECORD

x: INTEGER

END;

R1 = RECORD (R)

a, b: REAL

END;

Scope

Scope Ident x

Scope
next

Ident R Ident R1

next
Ident a Ident b

Field Field

prev

prev

Field

Type Type

Record

Record

scope

scope

baseTyp

realTypintTyp

typ typ

typ

typ typ

Const 0

Const 0

Const 1

top scope

first

first

first

Figure 5.3 Representation of Records
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All information used for a pointer type is its base type (pointeeTyp). Procedure
types are determined by the procedure's parameter list and their result type, if
any. The procedure parameters as well as local variables are held in the same
scope, the parameters beeing distinguished from local variables by the type of
the representing object (Par instead of Var). Furthermore, parameters, if any, are
always at the beginning of an identifier list. The types of procedure objects
(Proc) and the structure belonging to procedure types are represented in the
same way, namely by Struct nodes associated with a scope containing the
procedure parameters (Figure 5.4).

Example:

TYPE

P1 = PROCEDURE (x: REAL): REAL;

PROCEDURE P2 (x: REAL): REAL;

VAR a: INTEGER;

BEGIN

...

END P2;

Scope Ident a
scope next

Ident xProced.

Par Var

Scope
scope

Ident xProced.

Par

Scope
next

Ident P1 Ident P2

Type Proc

realTyp

resTyp

resTyp

prev

top scope

first

first

first

Figure 5.4 Representation of Procedures and Procedure Types

Finally, the module OVT provides a set of initialized global Struct variables
which provide references to the Oberon_V basic types (cf. Appendix A.6.1) and a
few internally used types (such as e.g. nilTyp or stringTyp):

VAR

undefTyp, adrTyp, nilTyp, stringTyp,

boolTyp, charTyp, setTyp, intTyp, realTyp, cmplxTyp: ↑Struct;
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The type adrTyp deserves a special explanation: Because the intermediate
representation of expressions does not distinguish between computations
explicitly specified in a program and address computations implicitly specified
via selectors, it is impossible to decide afterwards, which expressions represent
"normal" computations and which represent implicit address computations
(remember that the unified representation of expressions is required to handle
range expressions). However, a back_end may generate significantly better code,
if it is known which computations can be performed in address registers (if
there are any) and which computations must be performed in other (scalar)
registers. Furthermore, for address computations, explicit addition of constant
values may be deferred and sometimes even is not necessary (e.g. if the address
to be computed is used for a load instruction that allows for immediate
operands). For normal computations such an approach would change the
semantics of the computation. In OVT, all operands of address computations
are first converted into "addresses", i.e. a conversion node is introduced if
necessary. Figure 5.5 illustrates the use of an address conversion node within an
index address computation. A particular back_end may interpret such a
conversion node such that code is generated to move the operand into an
address register. Note that only integer values are converted into addresses. Like
"linear operations" (cf. Section 3.5), a conversion applied to a range object is
transformed to conversions applied to the ranges' coefficients.

Var

Var

+

*

Conv

A[i]

Stride

Adr(i)

Adr(A)

intTyp

adrTyp

adrTyp

adrTyp

adrTyp

adrTyp

adrTyp

realTypExample (without index checks):

VAR

A: ARRAY 100 OF REAL;

BEGIN

... A[i] ...

Figure 5.5 Conversion of an Integer Index into an Address
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5.2.3 Representation of Statements

Procedures and modules may have bodies containing statement sequences.
Statement sequences are represented as lists of extended Stat records (Figure
5.6). For each statement, an appropriate record extension is used.

S1 S2 S3

next nextTYPE

Stat = RECORD

next: ↑Stat

END;

S1; S2; S3Stat Stat Stat

Figure 5.6 Representation of Statement Sequences

Assignments are represented by two expression trees, one for the left_hand side
designator and one for the right_hand side expression of the assignment (Figure
5.7). An new assignment statement is generated using the procedure Assign

which checks whether the assignment is legal and which introduces additional
conversion nodes if necessary (e.g. to convert the result of an integer expression
to a real value). The same procedure is also used to generate parameter lists for
procedure calls (with param = TRUE, see below):

Assign.

dst src

TYPE

Assignment = RECORD (Stat)

dst, src: ↑Object

END;

PROCEDURE Assign (VAR stat: ↑Stat; dst, src: ↑Object; param: BOOLEAN);

Example:

d := e

Obj. d Obj. e

Figure 5.7 Representation of Assignments

Procedure calls are represented by ProcCall nodes, which contain a reference to
the called procedure object (which may be a procedure variable, too) as well as
a list of assignments. Each assignment corresponds to a pair (parameter,
argument). Figure 5.8 illustrates the data structure corresponding to a call of a
procedure P. The parameter objects are found in the scope of the called
procedure.
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next
Scope

scope next
Ident xProced.

Par

Ident a
next

VarPar

Ident y

Assign. Assign.
args

Proc

ProcCall

proc

typ

next

src src

dst dst

TYPE

ProcCall = RECORD (Stat)

proc: ↑Object;

args: ↑Assignment

END;

Example:

PROCEDURE P (x, y: INTEGER);

VAR a: INTEGER; ...

END P;

BEGIN

P(e1, e2); ...

Obj. e1 Obj. e2

Figure 5.8 Representation of Procedure Calls

The IF statement is represented using an If node. Because ELSIF branches can
be considered as nested IF statements (cf. Appendix A.11.5), no special ELSIF
node is required (Figure 5.9). Nevertheless, the same code quality can be
achieved with a straight_forward translation.

If
TYPE

If = RECORD (Stat)

cond: ↑Object;

then, else: ↑Stat

END;

cond

then

else

Stat S1

Stat S2

Obj. c

Example:

IF c THEN S1

ELSE S2

END

Figure 5.9 Representation of IF Statements

Syntactically, the CASE statement is the most complicated statement and thus
requires a more complex data structure for its representation than other
statements. The Case node contains a reference to the tag expression, a pointer
to a list of case labels as well as the minimum and maximum value assumed by
these case labels. Case labels which belong to the same case label list of a
CASE statement follow each other in the labels list and point to the same
statement sequence (then). Each CaseLabels entry is determined by two values
beg and end, which denote the case labels in the set {beg, beg+1, ... end}. If the
set contains only a single element only, then beg = end (Figure 5.10).
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TYPE

Case = RECORD (Stat)

tag: ↑Object;

min, max: INTEGER;

labels: ↑CaseLabels;

else: ↑Stat

END;

CaseLabels = RECORD

next: ↑CaseLabels;

beg, end: INTEGER;

then: ↑Stat

END;

Example:

CASE e

OF e1 THEN S1

OF e2 .. e3 THEN S2

OF e4, e5 .. e6 THEN S3

ELSE S

END

Stat S1

Stat S2

Stat S3

beg = e1
end = e1

beg = e2
end = e3

beg = e4
end = e4

beg = e5
end = e6

Stat S

Obj. e

min
max

Case

CaseLb.

CaseLb.

CaseLb.

CaseLb.

next

next

next

labels

tag

else

then

then

then

then

Figure 5.10 Representation of CASE Statements

The REPEAT and WHILE statements are very similar; Figures 5.11 and 5.12 show
the corresponding data definitions.

While Stat S

Obj. c

Example:

WHILE c DO S END
cond

bodyTYPE

While = RECORD (Stat)

cond: ↑Object;

body: ↑Stat

END;

Figure 5.11 Representation of WHILE Statements
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Stat S

Obj. c

Example:

REPEAT S UNTIL c
cond

bodyTYPE

Repeat = RECORD (Stat)

cond: ↑Object;

body: ↑Stat

END;

Repeat

Figure 5.12 Representation of REPEAT Statements

The Return record type contains a reference to the returned object (val), if any. A
special Stat extension called BuiltIn is used to represent calls of predefined
procedures such as NEW or HALT; such procedures are identified by a
procedure number (f) and they may have at most three arguments x, y, and z.
BuiltIn statement nodes are created using the StdProcCall procedure, which also
performs the necessary checks.

TYPE

Return = RECORD (Stat)

val: ↑Object (* val = NIL <=> no return expression *)

END;

BuiltIn = RECORD (Stat)

f: INTEGER;

x, y, z: ↑Object

END;

PROCEDURE StdProcCall

(VAR stat: ↑Stat; proc: ↑StdProc; VAR args: ARRAY OF ↑Object; nofArgs: INTEGER);

Finally, a representation for ALL statements is required. As explained in Chapter
3 (Section 3.7), an n_dimensional ALL statement is transformed into n nested
loops with corresponding prolog and epilog assignment sequences. Each loop
needs a counter variable and an initial value for this counter, namely the length

of the range declaration in this dimension. If the length of the innermost loop is
short, i.e. if the length of the n_th loop is constant and less than VLmax, no
innermost loop is required at all. This is signaled by a missing counter variable
for this loop (i.e. by counter[nofDims] = NIL). Furthermore, a list of constraints
(cnstr) to be checked before executing the ALL statement is provided (cf.
Section 3.9, Index Checks). The body field in the All record points to the
statement sequence corresponding to the transformed assignment sequence
enclosed by the ALL statement.



110 An Oberon_V Compiler

TYPE

All = RECORD (Stat)

prolog, epilog: ARRAY MaxNofDims+1 OF ↑Stat;

length: ARRAY MaxNofDims+1 OF ↑Object;

counter: ARRAY MaxNofDims+1 OF ↑Var;

nofDims: INTEGER;

cnstr: ↑Constraint;

body: ↑Stat

END;

PROCEDURE AllStat

(VAR stat: ↑Stat; lengths: ARRAY OF ↑Object; nofDims: INTEGER; scope: ↑Scope);

After compilation of the range declaration and the assignment sequence of an
n_dimensional ALL statement, the assignment sequence (stat), the length of the
range declaration, the number of dimensions (nofDims) as well as the current
scope are passed as arguments to AllStat. AllStat transforms the assignment
sequence as described in Section 3.7.2 and creates the necessary prolog and
epilog statements. Auxiliary variables introduced during the transformation as
well as counter variables are simply appended in the current scope, using
identifier names which cannot be used in a legal Oberon_V program. Thus, they
are invisible to the programmer but can be handled like other variables by the
compiler.

5.2.4 Representation of Entire Programs

Eventually one may have a look at the representation of entire programs. In
Oberon_V a compilation unit is a module. Modules are represented by Module

objects:

Type

Module = RECORD (Proc)

fingerprint: INTEGER

END;

From an operational view point, modules can be regarded as special
procedures, and therefore they are represented by extensions of Proc objects (it
is also convenient to do so, since code generation for modules and for
procedures is very much the same. Thus, this extension relation allows for a
similar treatment of procedures and modules in the back_end). The fingerprint

field is used for interface checks and is computed of the symbol file (see
Section 5.2.5). As with procedure objects, a module scope and a statement
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sequence are associated with a module object. The module scope contains all
declarations, i.e. all globally declared identifiers which are used to refer to any
(globally visible) object in the module. Note that also imported modules are
contained within this scope. Since local scopes and statement sequences of
procedures are associated with the corresponding procedure objects, which
again are referred to by its identifiers, a module identifier associated with a
module object may represent an entire program. This fact is also reflected by
the interface of the parser OVP (mid is the module identifier corresponding to
the compiled module):

MODULE OVP (OVT);

PROCEDURE Module (VAR mid: ↑OVT.Ident);

END OVP.

5.2.5 Import and Export

In an Oberon_V module, globally declared objects can be made available to
other modules by means of exporting the corresponding identifiers. Vice versa,
exported objects of other modules can be used by means of importing the
corresponding identifiers of these modules (cf. Appendix A, Sections A.4 and
A.12). The collection of all exported objects constitutes a module's interface.
Similar import/export mechanisms can be found in Modula_2 [Wirth 1885]
and Oberon [Wirth 1988a].

In order to implement import and export safely, a compiler must know the
interfaces of imported modules. Usually this information is contained in
so_called symbol files, which are generated as by_products of module
compilations and which are read during the compilation of import lists.
Roughly speaking, a symbol file contains a linearized description of a subset of
the symbol table, namely the subset of all exported identifiers together with
their associated object and type information. Thus, generating a symbol file
means linearizing the symbol table, and reading a symbol file means
reconstructing parts of the symbol table from its linearized description.
Although basic algorithms for the linearization of graphs and their
reconstruction are not difficult, their application to symbol files is significantly
more subtle, mostly because a single type can be imported several times through
different modules. Thus, it is necessary to recognize whether two types
imported from different modules actually denote the same type or not. As a
further requirement, it is necessary that already compiled modules can easily
detect whether their imported modules have changed their interfaces. A simple
solution for this problem is to compute a (statistically) unique fingerprint, e.g.
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an integer, from a symbol file and to use this fingerprint as an identification for
the whole interface. If the interface changes, also the fingerprint changes.

A new method for import and export based on a linearization algorithm for
general graphs has been developped. Since the problem is not directly related
to the topic of this thesis, its implementation is not described here, but the
interested reader is referred to [Griesemer 1991]. The main advantage of this
algorithm when compared with a solution currently used in Oberon compilers
[Gutknecht 1985] is that recursive type definitions do not impose any problems
at all, whereas Gutknecht's solution requires a special treatment for recursive
type definitions via pointers (and would also for other forms of recursive type
definitions, if they were allowed in current Oberon compilers). An elaborate
treatment of the import/export topic will be found in [Crelier 1993]. Also a
mechanism to extend a module interface afterwards without changing its
fingerprint will be described there.

5.3 Code Generation

After a compilation unit has been successfully parsed and the intermediate data
structure has been built, this data structure is passed to the back_end. The
back_end consists of four modules: The high_level code generator OVC, the
module OVE generating code patterns for expressions, the module OVV which
manages the virtual code generated by OVE, and the low_level module OVO

which assembles the final Cray object file. In the following a rough survey of
the modules OVC, OVE and OVV is given.

5.3.1 OVC: High Level Code Generation

The module OVC provides three services for code generation, namely the
procedures SetSize, AllocSpace and GenCode and thus corresponds to a similar
module called OPV of the Oberon_2 compiler OP2 [Crelier 1990]:

MODULE OVC (OVT);

PROCEDURE SetSize (typ: ↑OVT.Struct);

PROCEDURE AllocSpace (pid: ↑OVT.Ident; VAR GSize: INTEGER);

PROCEDURE GenCode (pid: ↑OVT.Ident);

END OVC.
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SetSize computes the size required for variables of arbitrary type (typ); the
procedure is installed in the global variable OVT.SetSize (cf. Section 5.2.2) by
the command module OV. Before starting code generation via GenCode, the
procedure AllocSpace is called which computes the addresses of variables (and
parameters) local to a procedure or module specified by their identifiers (pid).
For each scope, all identifiers are sorted according to the value of their usage

field (cf. Section 5.2.1). Variables referred to by identifiers with high usage are
processed first and hence register locations may be allocated for them, if their
addresses are leaf. The address information for variables as well as additional
data (such as the total size of all local variables, etc.) are held in extensions of
Address objects associated with Var and Par (or Proc) objects; the extension is
defined in module OVE. The global data size (GSize) is also computed by
AllocSpace. Note that no distinction is required between variables in local
scopes and variables in module scopes, but address allocation is determined
only by the exported and usage information of Ident nodes as well as the level

and leaf fields of Address objects (cf. Section 5.2.1). Thus, global variables that
are used only in the initialization statement sequence of a module may also be
allocated in registers or on the run_time stack. Finally, GenCode is used to
traverse the scope of a procedure or module (pid). GenCode is called recursively
for each local procedure. After traversing a procedure's scope, GenCode
generates code for the syntax tree corresponding to the procedure's statement
sequence.

Code generation can be regarded as a transformation of the syntax tree into
a linearized sequence of machine instructions. A systematic and efficient
approach is to map every node of the syntax tree into a semantically equivalent
code sequence, which then is appended to the code already generated. In the
Oberon_V compiler, a simple technique is used which proved to be successful
in a series of similar compilers [Wirth 1985a][Wirth 1992][Brandis et. al. 1992].
In order to generate code for a node S, first, code is generated for all its
descendant nodes S1, S2, ... Sn. Information about the code generated for a
node Sk is returned in an attribute xk. The attributes x1, x2, ... xn are then used
to generate the code for S. The attribute x describing the code for S may in turn
be used by the parent of S, and so on. Thus, if the (well_understood) influence
of the symbol table is ignored, a context_free translation of nodes Sk is
obtained. For a given node S, its code Code(S) is a function FS of the Code(Sk)
generated for its descendant nodes Sk:

Code(S) = FS(Code(S1), Code(S2), ... Code(Sn))
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This translation scheme yields an attribute flow along the edges of the syntax
tree during its traversal (Figure 5.13). The attribute xk typically represents
information about the result of a computation Sk, e.g. a register number, a
memory address or a condition code. Attributes are usually represented by
records called Items. Since the attribute flow corresponds to the call order of the
procedure traversing the syntax tree, items simply can be passed as arguments
to this procedure.

S

S S S1 2 n

x x x1 2 n

...

...

x

Figure 5.13 Attribute Flow during Code Generation

In order to give an idea of how this tree traversal proceeds, parts of the
CExpression procedure for conditional expressions are shown below. The
procedure recursively traverses an expression tree (obj) and yields an item (x).
After traversing the descendants of an Expr node (cf. Section 5.2.1), code is
generated for this node by means of procedures from module OVE; these
procedures correspond to the functions FS. The boolean operations and and or

(& and | ) do not only compute a value but also change the control flow of the
generated code (e.g. the second operand of an or operation must be evaluated
only if the first operand evaluated to FALSE). This conditional evaluation requires
additional information in order to generate the necessary jumps. Without going
too much into details, it is mentioned that these information is provided by
means of two label arguments, namely the label tjmp denoting the jump
destination in case of an evaluation to TRUE and fjmp denoting the jump
destination in case of an evaluation to FALSE (see also [Wirth 1992]) These
labels are also used to generate code for conditional statements depending on
the value of their corresponding conditional expression (note that setting a label
with OVV.Label may involve a list of forward jumps to be fixed up). The
procedure Expression is used when no conditional result is expected.

PROCEDURE Expression (VAR x: OVE.Item; obj: ↑OVT.Object);

VAR tjmp, fjmp: INTEGER;

BEGIN tjmp := OVV.NewLabel; fjmp := OVV.NewLabel;

CExpression(x, obj, tjmp, fjmp); OVE.Value(x, tjmp, fjmp)

END Expression;
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PROCEDURE CExpression

(VAR x: OVE.Item; obj: ↑OVT.Object; VAR tjmp, fjmp: INTEGER);

VAR y: OVE.Item; ran: ↑OVT.Range; expr: ↑OVT.Expr; L: INTEGER;

BEGIN

IF obj IS OVT.Address THEN OVE.GetAddress(x, obj{OVE.Address})

ELSIF obj IS OVT.Const THEN OVE.GetConst(x, obj{OVT.Const})

ELSIF obj IS OVT.Var THEN Expression(x, obj{OVT.Var}.adr); OVE.GetVar(x)

ELSIF obj IS OVT.Proc THEN OVE.GetAddress(x, obj{OVT.Proc}.adr{OVE.Address})

ELSIF obj IS OVT.Range THEN ran := obj{OVT.Range};

Expression(x, ran.coeff[0]); Expression(y, ran.coeff[1]); OVE.GetVector(x, y)

ELSIF obj IS OVT.Expr THEN expr := obj{OVT.Expr};

IF expr.f = OVT.and THEN L := OVV.NewLabel;

CExpression(x, expr.x, L, fjmp); OVE.Condition(x); OVE.Not(x);

OVE.Jump(x, fjmp);

OVV.Label(L); CExpression(x, expr.y, tjmp, fjmp); OVE.Condition(x)

ELSIF expr.f = OVT.or THEN L := OVV.NewLabel;

CExpression(x, expr.x, tjmp, L); OVE.Condition(x); OVE.Jump(x, tjmp);

OVV.Label(L); CExpression(x, expr.y, tjmp, fjmp); OVE.Condition(x)

ELSIF expr.f = OVT.not THEN CExpression(x, expr.x, fjmp, tjmp); OVE.Not(x)

ELSIF expr.y = NIL THEN Expression(x, expr.x); (* unary operation *)

CASE expr.f

OF OVT.abs THEN OVE.Abs(x)

OF OVT.ord THEN OVE.Ord(x)

...

END

ELSE Expression(x, expr.x); Expression(y, expr.y); (* binary operation *)

CASE expr.f OF

OF OVT.add THEN OVE.Add(x, y)

OF OVT.sub THEN OVE.Sub(x, y)

...

END

END

ELSIF obj IS OVT.FuncCall THEN ...

END;

x.typ := obj.typ

END CExpression;

5.3.2 OVE: Expressions

The module OVE could be titled the "work horse" of the back_end modules,
since its procedures effectively translate an abstract operation such as an
addition or an assignment into machine instructions. However, in order to
simplify code generation and to enable some optimizations, OVE does not
generate Cray code but code for a virtual machine. The difference between this
virtual code and Cray code is, that an unbounded number of registers for
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expression evaluation is assumed. The instructions themselves are (nearly) the
same. As will be explained in the next section, this allows for some powerful
optimizations. Furthermore, it relieves module OVE from handling register
allocation for temporary values (i.e. for expression results, etc.).

To provide the prerequisites for understanding the OVE data structures, a
brief description of the Cray architecture is given. A Cray Y_MP processor offers
5 different register files, namely 8 scalar address registers (A_registers) of 32 bits
width, 8 scalar general_purpose registers (S_registers) of 64 bits width and 8
vector registers (V_registers). Each vector register may hold at most 64 elements
of 64 bits width each, i.e. VLmax = 64. Additionally, there are two register files
with 64 temporary registers each, called B_ and T_registers. B_registers have a
width of 32 bits, T_registers may hold 64_bit values. These temporary registers
are used to hold local variables and to pass procedure arguments. Address
computations are performed using the A_registers; conventional scalar
arithmetics is done using the S_registers and vector instructions operate on the
V_registers. The instruction set is very similar to the instruction set of the
hypothetical machine introduced in Section 1.1. Note that for almost all
operations op three instruction variants exist:

Si := Sj op Sk
Si := Sj op Vk
Si := Vj op Vk

For a general description of the Cray architecture and its instruction set, the
reader is referred to [Russel 1978], [Robbins 1987] and [Cray 1988]. In the
following, only a rough survey of the internals of the module OVE is given. The
only data types exported are the type Address, an extension of OVT.Address, as
well as the Item data type (where only the typ field is exported):

Address = RECORD (OVT.Address)

mode, reg, adr, rel: INTEGER;

LSize, ... : INTEGER

END

Item = RECORD

typ: ↑OVT.Struct;

mode, reg, ireg, adr, rel, n: INTEGER

END

The mode, reg, adr and rel fields of an Address object specify the location of a
variable or procedure: the mode field determines, which of the remaining fields
is valid; reg corresponds to a register number; adr and rel specify a memory
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address and possible relocation information required to generate Cray object
files. The fields LSize, etc. are used for procedures (and modules) only and
specify the stack requirements and the number of local variables held in
registers.

The architecture of a code generator and thus also the module OVE is
strongly influenced by the addressing modes provided by the target machine.
These addressing modes find their direct representation in the different modes

of items. An Item record specifies (the location of) a value. Figure 5.14 shows
the possible contents of item records and their interpretation. Note that using
type extension to represent different item modes would be unpractical because
items frequently change their modes during their life times, and every mode
change would require to allocate a new item.

VCond x cond vector mask

VectorI x stride M[(Areg) + i*(Aireg)]

Vector x stride (A/Sreg) + i*(A/Sireg)

VregI x x M[(Areg) + (Vireg[i])]

VregO x x x x (Areg) + (Vireg[i]) + adrrel

Vreg x (x) (Vreg[i])

Cond x cond condition

Sreg x (x) (Sreg)

AregI x x x M[(Areg) + adrrel]

AregO x x x (Areg) + adrrel

Areg x (Areg)

Treg x (Tn)

Breg x (Bn)

Const value constant

Proc * level label x adrrel

Mem * level x x (FPlevel) + adrrel

TregN * x Tn

BregN * x Bn

mode reg ireg n adr rel meaning

Figure 5.14 Item Modes and Interpretation

Modes which are marked (*) appear also as modes for address objects. A_, S_
and V_register numbers (fields reg and ireg) specify virtual registers; they start
with the number 8. Register numbers smaller than 8 are interpreted as
immediate operands. Especially, the register number 0 denotes the value 0 (or
0.0, depending on the item type) and the register number 1 the value 1 (or 1.0
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respectively). This encoding is useful to improve code generation for operations
on complex numbers and also to denote special vector strides (e.g. vectors with
stride 1; they can be loaded with a special instruction).

Constant values (mode = Const) are always held in an item record itself
(field n). A value held in a register is represented by an item with mode Areg,
Sreg, Vreg, Breg or Treg; the register number is specified by the reg field. In case
of a complex number, i.e. where the item type is cmplxTyp, the ireg field
specifies the S_ or V_ register holding the imaginary part of the number or vector
(which may also be a constant, namely 0.0 or 1.0, using the encoding scheme
explained before). Real and imaginary parts held in T_registers or in main
memory are always stored consequtively, thus a single address suffices in these
cases. Variables held in memory are represented by items with modes AregI,
Mem, VregI and VectorI. The relocation field rel is valid only if it contains a
positive value.

The BregN, TregN, AregO, VregO and Vector modes deserve a special
explanation: Since no distinction is made between conventional and address
computations by the front_end, and because addresses (which may be simple
register numbers) appear also in expression trees, they consequently appear also
as items. Here, these modes simply denote a B_ or T_register number, a (scalar)
memory address, a vector of memory addresses or a vector address respectively.
During traversal of an expression tree, each occurrence of a Var node implies a
corresponding transition of the corresponding item mode from a mode
denoting an address to a mode denoting a variable at this address. The
procedure GetVar performs this transition:

PROCEDURE GetVar (VAR x: Item);

VAR v: INTEGER;

BEGIN

CASE x.mode OF

OF BregN THEN x.mode := Breg

OF TregN THEN x.mode := Treg

OF Breg, Treg, Areg, AregI, Sreg THEN LoadA(x); x.mode := AregI; x.adr := 0; x.rel := −1

OF AregO THEN x.mode := AregI

OF Vreg, VregI, VectorI THEN LoadV(x); x.mode := VregI; x.ireg := x.reg; x.reg := 0

OF VregO THEN v := x.ireg; x.mode := AregO; ToAreg(x); x.mode := VregI; x.ireg := v

OF Vector THEN x.mode := VectorI

END

END GetVar;

Figure 5.15 illustrates the OVE procedure calls, the transition of the item modes
and the code generated for a simple addition of two variables. The (small)
numbers 1, 2, ... 5 indicate the visiting order of each node.
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Var Var

Adr(a) Adr(b)

+

GetAddress(x, ...)
x.mode = TregN

x.reg = 6

GetVar(x)
x.mode = Treg

x.reg = 6

GetAddress(y, ...)
y.mode = TregN

y.reg = 7

GetVar(y)
y.mode = Treg

y.reg = 7

Add(x, y)
x.mode = Sreg

x.reg = 24

a + b

1

2 4

3

5

Code generated at step 5:

S22 := T6

S23 := T7

S24 := S22 + S23

Figure 5.15 Transition of Item Modes for Scalar Addition

For each operation of the language Oberon_V, a procedure is provided by
module OVE. Each of these procedures usually accepts one or two item
arguments x and y describing the (location of the) operands. After execution of
a particular procedure, the item x describes the computed value (the value of y
is undefined).

PROCEDURE GetAddress (VAR x: Item; adr: ↑Address);

PROCEDURE GetConst (VAR x: Item; con: ↑OVT.Const);

PROCEDURE GetVar (VAR x: Item);

PROCEDURE GetVector (VAR x, stride: Item);

...

PROCEDURE Abs (VAR x: Item);

PROCEDURE Ord (VAR x: Item);

...

PROCEDURE Add (VAR x, y: Item);

PROCEDURE Sub (VAR x, y: Item);

...

Procedure GetVector constructs a vector item with mode = Vector from its
address (x, stride). The items for x and stride are directly obtained by evaluating
the c0 and c1 coefficients of the corresponding range object (cf. previous
section, procedure CExpression). Note that at this stage of code generation, only
range objects with two coefficients occur. If an OVE procedure is called with
vector items as arguments, the corresponding vector instructions are generated
instead of scalar code. Fig. 5.16 shows the OVE procedure calls, the transition of
item modes and the generated code for the addition of a vector and a scalar
value.
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+

Var

cc

Var

Var

Adr(c)

Const 1

Adr(v)GetAddress(x)
x.mode = BregN

x.reg = 14

GetVar(x)
x.mode = Breg

x.reg = 14

GetConst(x, ...)
y.mode = Const

y.n = 1

GetAddress(y)
y.mode = TregN

y.reg = 4

GetVar(y)
y.mode = Treg

y.reg = 4

Add(x, y)
x.mode = Vreg

x.reg = 46

GetVector(x, y)
x.mode = Vector

x.reg = 43

x.ireg = 1

GetVar(x)
x.mode = VectorI

x.reg = 43

x.ireg = 1

1

2 3

4

5

6

7

8

Code generated at step 4:

A43 := B14
Code generated at step 8:

V44 := M[1, A43]

S45 := T4

V46 := S45 + V44

ALL r = 0 .. 63 DO

... v[r] + c ...

END

0 1

Figure 5.16 Transition of Item Modes for Vector Addition

Note the special interpretation of the constant stride in step 4: Since vectors
with stride 1 can be loaded with special vector load instructions which require
only a single register argument (the start address), no A_register for the stride is
introduced. Instead, it is represented by the special register number 1 which
denotes the immediate value 1.

5.3.3 OVV: The Virtual Machine Code

The module OVV contains data structures and procedures to store and
optimize virtual machine code. In the sequel two optimizations applied to this
virtual code are described briefly. For clarity the instructions of the hypothetical
machine introduced in Section 1.1 are used. The basic difference when
compared with the virtual instructions used for the Cray Y_MP is the restriction
to 2 register files (the S_ and V_registers) instead of 5 register files. Since the
optimizations described here can be applied both to scalar and vector
instructions, it is concentrated on scalar instructions only.

Common Subexpression Elimination, or CSE for short, is the elimination of
redundant computations, i.e. the elimination of instructions which calculate an
expression that has been calculated before. CSE can be done on different levels
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during the compilation process but is most effective when applied to a program
representation which closely mirrors the available machine instructions. This is
due to the fact that translation itself may introduce new common
subexpressions which were not apparent when CSE would be applied earlier
(e.g. address computations for array elements). The CSE algorithm used in
module OVV is based on a well_known technique called value numbering

[Cocke 1970]. As an example, let us consider the code generation for the
expression A[i+1, j] + A[i+1, k] where A is a 100 x 100 real array and i, j and k
denote integer variables. The algorithm works as follows: For every virtual
instruction computing a new value, a new destination register is allocated
(which also explains the name value numbering). This preserves all previously
computed values and hence they can be accessed in any subsequent
computation. For the first term A[i+1, j] the following code is generated:

; S0 address of A

; S1 variable i

; S2 variable j

; S3 variable k

;

S10 := 1 + S1 ; i+1

S11 := 100 * S10 ; (i+1)*100

S12 := S2 + S11 ; (i+1)*100 + j

S12 := M[S0 + S12] ; A[i+1, j]

Before generating a new instruction, the already generated instructions are
searched for an equivalent instruction. If such an instruction is found, no code
is emitted but the destination register of the already existing instruction is used
instead. The following example illustrates the code generation for A[i+1, k]:

; S13 := 1 + S1 1+S1 has been computed already: use S10

; S13 := 100 * S10 100 * S10 has been computed already: use S11

;

S13 := S3 + S11 ; (i+1)*100 + k

S14 := M[S0 + S13] ; A[i+1, k]

S15 := S12 +F S14 ; A[i+1, j] + A[i+1, k]

In the example the expression i+1 must be computed to determine the array
offset for the second term. Scanning backwards in the instruction stream
reveals that the same computation has been performed already, and that the
result is in register S10 (and must still be there because of the consecutive
register numbering). Instead of generating an add instruction and introducing a
new register, the value in register S10 is used. The same happens, when an
attempt is made to compute (i+1) * 100. The value i+1 is in S10, thus a
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multiply instruction 100*S10 should be generated. Scanning backwards reveals
that the result of 100 * S10 is held already in S11; thus no code must be
emitted but S11 can be used instead. When continuing this way, all redundant
instructions will be eliminated and optimal code (as far as CSE is concerned)
results.

Further improvement is achieved, by a special treatment of commutative
operations: Obviously, an instruction S10 * S11 yields the same result as S11 *
S10. It is a good idea to normalize instructions for commutative operations, e.g.
such that the first register operand always has the smaller register number.
Often, such a normalization is required anyway in order to have an immediate
operand at the right position in the instruction format.

In OVV, the virtual code is simply stored in an array. Each array element
corresponds to a virtual instruction. The element index can be regarded as
program counter and also corresponds to the destination register number, which
therefore has not to be stored explicitly. Note that the CSE algorithm as it has
been presented here must be applied within extended basic blocks only, i.e. no
label must occur within the code stretch to be optimized, except at its very
beginning. Furthermore, special precautions are required for load and store
instructions; these topics are not discussed here. CSE would be relatively slow
without optimizations: Before the i_th instruction can be generated, all i−1
previous instructions in the basic block must be inspected and compared with
the new instruction in question. For a sequence of n redundancy free
instructions, (n2−n)/2 comparisons are necessary in total; i.e. the algorithm has
a run_time complexity of O(n2). In OVV, all instructions denoting the same
operation are chained in the instruction array. Thus, searching backwards
requires only searching instructions denoting the same operation. In practice an
almost linear run_time is achieved.

To give an idea of the implementation, the procedure Op2 and parts of the
required data structures are shown below. Op2 is responsible for binary
operations op applied on two operands held in virtual registers j and k. The
result of the computation is assigned to the virtual register i (corresponding to
the instruction index in the Code array). Op2 is used in module OVE whenever a
binary operation has to be generated. The Root array contains the roots of all
instruction chains linking instructions with the same op field.

CONST

NofInstr = ... ; CodeSize = ... ;
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VAR

Root: ARRAY NofInstr OF INTEGER;

Code: ARRAY CodeSize OF RECORD

op, j, k, ... : INTEGER; (* instruction Sj op Sk *)

link: INTEGER; (* previous instruction with same op field; −1 denotes end of chain *)

...

END;

PROCEDURE Commutative (op: INTEGER): BOOLEAN; (* TRUE if op is commutative *)

PROCEDURE Insert (op: INTEGER; VAR i: INTEGER; j, k: INTEGER); (* inserts new instr. *)

PROCEDURE Op2 (op: INTEGER; VAR i: INTEGER; j, k: INTEGER);

BEGIN

IF (j > k) & Commutative(op) THEN i := j; j := k; k := i END; (* canonical form: j <= k *)

i := Root[op];

WHILE (i >= 0) & ((Code[i].j # j) OR (Code[i].k # k)) DO i := Code[i].link END;

IF i < 0 THEN (* no CSE found *) Insert(op, i, j, k) END

END Op2;

As a final example for CSE its application to extended basic blocks is shown:
Since jumps do not invalidate the current contents of the virtual registers, their
contents may also be reused after a jump, i.e. across basic block boundaries.
Thus, a statement sequence in a THEN branch may also profit from common
subexpressions in the conditional expression of an IF statement. In the example
below, the code in the THEN branch is reduced to a single instruction only.
Also redundant index checks are eliminated this way in OVV (not shown here).

IF A[i, j] < x THEN A[i, j] := x END

; S0 address of A

; S1 variable i

; S2 variable j

; S3 variable x

;

S10 := 100 * S1 ; i*100

S11 := S2 + S11 ; i*100 + j

S12 := M[S0 + S11] ; A[i, j]

S13 := S12 <F S3 ; A[i, j] < x

Jump End (˜S13) ; IF A[i, j] < x THEN

M[S0 + S11] := S13 ; A[i, j] := x

End ... ; END

The second optimization performed in OVV is Instruction Scheduling or IS for
short: In pipelined computers the execution of an instruction is divided into
several suboperations that are executed sequentially on several independent
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units, called pipestages. With this organization, multiple instructions may
execute concurrently and each instruction occupies a different pipestage (Figure
5.17). At time t instruction a is in pipestage 1, at time t+1 instruction a is in
pipestage 2 and b is in pipestage 1, etc.

t+1 t+2 t+3 t+4 t+5 t+6
Time

t

1

2

3

Pipestage

a

a

a

b

b

b

c

c

c

d

d

delay

Instructions

Figure 5.17 Pipelined Execution of Instructions

An instruction depending on the result of a previous instruction must not be
issued until the required result is available. That is, either the compiler ensures
that the instruction is not issued too early or the processor delays the
instruction until its operands become available (pipeline interlock). In Figure
5.17, instruction d is assumed to use an operand (a register) computed by
instruction b and thus cannot be issued at time t+3 but must wait until
instruction b has terminated at t+4. Pipeline interlocks due to such timing

hazards may significantly decrease the performance of a program. On Cray
machines (cf. [Robbins 1987]) and many popular RISC architectures (e.g. MIPS
[Kane 1987] or SPARC [Sun 1987]) instructions are executed in a such a
pipelined fashion and hence a compiler should carefully avoid pipeline
interlocks imposed by the generated code. This is achieved by instruction

scheduling, i.e. the reordering of instructions such that interlocks are avoided but
the effect of the program is preserved. In the example it were possible to swap
the instructions a and b, assuming that a and b are independent. This would
reduce the execution time of the four instructions a ... d by 1 clock cycle (Figure
5.18).
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Figure 5.18 Pipelined Execution of Instructions after Scheduling

The IS problem is well_studied in the literature and approaches for its solution
go back to methods originally developed for microcode compaction [Landskov
1980]. A thorough survey of research can be found in [Gross 1983] or
[Hennessy 1983]. Like many practical problems, IS is NP_complete (see e.g.
[Gross 1983]) and hence only heuristic solutions are likely to be practicable.
Register allocation may introduce additional dependences that can restrict the
possibilities for instruction reordering. On the other hand, IS may increase
register pressure, i.e. the number of registers that are alive at a specific time, and
hence complicates register allocation. Thus, register allocation and IS pursue
conflicting goals. There are pre_ and postpass solutions: the former reorder
instructions before register allocation is done (e.g. [Auslander 1982], one of the
approaches described in [Gross 1993] or the solution used here), the latter
perform IS after register allocation (e.g. [Gibbons 1986], [Davidson 1984] and
[Davidson 1986]). Recent work tries to improve the situation by using
information of the scheduling phase to drive register allocation [Bradlee 1991].

The most common IS algorithms are variations of list scheduling ([Landskov
1980], [Gibbons 1986], [Warren 1990]): A dependence graph is constructed for
each basic block. Nodes of the graph represent machine instructions and edges
denote dependences; an edge from node a to node b indicates that a must be
executed before b in order to preserve the overall effect of the basic block. The
set of all nodes that have no predecessor, i.e. the set of instructions that depend
on no other instruction, is called the candidate set (Figure 5.19).
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S10 := S0 + S1

S11 := 2 * S10

S12 := S4 − S3

S13 := 10 + S12

S14 := S11 * S13

S15 := S10 / S12

S16 := S5 * S11

S17 := S14 / S15

(S0 ... S5 are assumed to

be available already)

S10 := S0 + S1

S11 := 2 * S10

S12 := S4 − S3

S13 := 10 + S12

S14 := S11 * S13

S15 := S10 / S12

S16 := S5 * S11

S17 := S14 / S15

Candidate Set

Figure 5.19 Dependence Graph and Candidate Set for a Basic Block

The list scheduling algorithm corresponds to a topological sort of the graph
nodes and proceeds as follows: While the candidate set and hence the graph is
not empty, a suitable instruction i of the candidate set is selected according to
some heuristics and its node is removed from the graph. Note that any
instruction j that had instruction i as its single predecessor, has no predecessor
after removing i and then enters the candidate set. A simple framework for list
scheduling can be formulated in Oberon_V:

PROCEDURE Schedule (G: Graph; Select: PROCEDURE (G: Graph): Node);

VAR n: Node;

BEGIN

WHILE ˜Empty(G) DO

n := Select(Candidates(G));

Remove(G, n);

Emit(n)

END

END Schedule;

The quality of a list scheduling algorithm depends on the selection heuristic.
Although list scheduling has a worst_case run_time proportional to O(n2) where
n is the number of instructions, a linear behavior can be expected for practical
cases [Gibbons 1986].

List scheduling appears to be a relatively simple technique for instruction
scheduling: basically, the dependence graph corresponds to the expression tree
drawn upside down (see Figure 5.19). Nevertheless, a simpler method was
developed for the Oberon_V compiler [Griesemer 1992]. The method profits
from the representation of virtual code by an array: For IS, instead of appending
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consecutive instructions, they are inserted in the code array at the earliest
possible location determined by data dependences and possible interlocks.
Using the array representation mentioned for CSE, the program counter can be
taken as the destination register number. Assuming that a new instruction is
issued every clock cycle (without interlocks), the program counter may also be
interpreted as the current clock. This leads to a surprisingly simple method for
directly placing an instruction while observing its dependences.

Let I(a, b) be an instruction depending on the contents of registers a and b
(i.e. the results of the instructions a and b). When E(a) and E(b) are the
execution times of these instructions, a+E(a) and b+E(b) are the times when
each result is available. Consequently, both results are available at Max(a+E(a),
b+E(b)), which is the earliest possible location for I.

Let us assume an execution time of 2 cycles for addition and memory load
and 3 cycles for multiplication (there are much longer execution times for Cray
Y_MP instructions). In the array expression example, the computation 100 *
S10 depends on S10 and the earliest issue time is 12 = Max(0, 10+2), since the
time used to compute S10 is 2 cycles and the operand 100 is available
immediately. Instead of simply appending the instruction as before at position
11, it is inserted at position 12. Note that the destination register number is
automatically determined by the instruction position and has not to be stored.
The resulting free instruction slots at position 11 may be thought as being filled
with a no_op instruction. Continuing this way, the following instruction
sequence for A[i+1, j] is obtained:

; S0 address of A

; S1 variable i

; S2 variable j

; S3 variable k

PC Execution time Result available

10 S10 := 1 + S1 ; i+1 2 12

11 no_op

12 S12 := 100 * S10 ; (i+1)*100 3 15

13 no_op

14 no_op

15 S15 := S2 + S12 ; (i+1)*100 + j 2 17

16 no_op

17 S17 := M[S0 + S15] ; A[i+1, j] 2 19

Hence, whenever a new instruction has to be inserted, its earliest issue time is
determined due to its data dependences and the instruction is then inserted at
the calculated position. Inserting an instruction after the end of the current
code block extends the block. When inserting an instruction in the middle of
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the code block, the instruction replaces the next free instruction slot (possibly at
the end of the code block). Eventually, the following code for A[i+1, j] + A[i+1,
k] is obtained:

; S0 address of A

; S1 variable i

; S2 variable j

; S3 variable k

PC Execution time Result available

10 S10 := 1 + S1 ; i+1 2 12

11 no_op

12 S12 := 100 * S10 ; (i+1)*100 3 15

13 no_op

14 no_op

15 S15 := S2 + S12 ; (i+1)*100 + j 2 17

16 S16 := S3 + S12 ; (i+1)*100 + k 2 18

17 S17 := M[S0 + S15] ; A[i+1, j] 2 19

18 S18 := M[S0 + S16] ; A[i+1, k] 2 20

19 no_op

20 S20 := S17 +F S18 ; A[i+1, j] + A[i+1, k]

The rules are a little bit more complex if store instructions are involved: To
preserve the effect of a code sequence, the relative ordering of consecutive
loads and stores must remain unchanged. These problems are not discussed
here.

After generating the virtual code for an extended basic block, it must be
translated into the target machine code. That is, for each virtual instruction one
(or several) target machine instructions have to be selected and final register
allocation must be done. When register pressure is too high, spill code has to be
inserted. In OVV this translation is done by an additional sweep over the virtual
code. A brief overview on this translation process is given in the sequel:

Target instruction selection: Since the virtual instructions differ from the target
machine instructions only in the unbounded number of registers used, this part
of the translation process is trivial: When the final register numbers are known,
the final machine instructions can be generated directly.

Register allocation: At this level only registers for temporaries occurring during
expression evaluation have to be allocated. In the OV compiler, the A_, S_ and
V_registers are used for this purpose. During translation of the virtual code into
final machine code, whenever a new result is computed, an appropriate
physical register is allocated from these register files using a simple round_robin
algorithm. The physical register number is remembered together with the
corresponding virtual register. Whenever the virtual register is referenced again,
the physical register number is used instead. At some point, the virtual register
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is not referenced any more and the corresponding physical register should be
released. To detect this situation, a simple technique which has been described
in [Freiburghouse 1974] is used. The key idea is to assign a reference counter to
every virtual register, i.e. instruction in the array representation. During
generation of the virtual code, this reference counter is increased whenever the
corresponding register is referenced by another instruction. During target code
generation, whenever a virtual register is referenced, the corresponding reference
counter is decreased. When it drops to zero, this was the last reference to the
virtual register and hence the corresponding physical register can be released.

Spill code generation: When straight_forward code is generated for
expressions (without CSE or IS), very few registers are usually required to hold
temporaries. However, CSE and IS significantly raise register pressure. Even
when reserving eight or more registers for expression evaluation, excessive
register demand may require to spill currently unused registers to memory.
When spilling to memory, reload instructions have to be inserted which may
impose new interlocks.

In case of the Cray Y_MP, spilling is relatively cheap because a good portion
of the temporary B_ and T_register files is reserved for this purpose. Load and
store accesses to temporary registers are executed in one cycle, therefore no
additional interlocks are introduced. Spilling to main memory would be
impractical due to the long latency of load instructions. Note that only local

spilling is necessary, i.e. within basic blocks. This is in contrast to simple
Chaitin_like graph_coloring techniques for register allocation which globally (i.e.
for an entire procedure) decide, which values have to reside in memory [Chaitin
1982]. Nevertheless, the decision which register to spill is difficult and depends
highly on the context in which the register is used. As a simple heuristic, in
OVV the physical register which has not been used for the longest time is
spilled.

5.4 Hardware Support

Some problems related to code generation for the particular instruction set of
the Cray Y_MP have not been discussed yet. In fact, this instruction set has
some deficiencies which make the generation of correct code cumbersome. It is
interesting that most of these deficiencies apply also to an older architecture,
namely the CDC 6000 series (already pointed out in [Wirth 1972]). This
relationship may not surprise since Seymour Cray worked also on the design of
the CDC 6600 and CDC 6700 machines. For the sake of brevity the details are
not discussed but the main trouble spots are summarized only:
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1. No overflow check on integer arithmetic. For both, the 32 bit and 64 bit
registers, there is no hardware support to detect integer overflows. The price for
guarding all integer operations is prohibitive.

2. No compare instructions. Conditional jumps depend on the comparison of
the A0_ or S0_registers with zero. A general comparison of the form x rel y is
transformed to (x−y) rel 0. If overflow occurs in the subtraction (which is not
simply detectable), the result of the relational expression is wrong.

4. No arithmetic shift instructions. Since also no instruction for sign extension
is available, an arithmetic shift right instruction must be emulated by a lengthy
sequence of logical and arithmetic operations.

5. No support for 64_bit integer multiplication/division. 64_bit integer
multiplication and division is performed using floating point arithmetics. Since
full 64_bit results would require subroutine calls or inlined code sequences of
up to 30 instructions for multiplication and even more instructions for division,
currently only 46_bit multiplication and division are implemented in Oberon_V.

Besides these deficiencies, the Cray Y_MP is quite clean and orthogonal, thus
making a clean and small code generator possible. Nevertheless, from the
viewpoint of the compiler writer, we would like to propose a single major point
that should be improved (increased), namely the number of general purpose

registers. Each of the three general_purpose register files (A_, S_ and V_registers)
provides only 8 registers. Furthermore, the A0 and S0 registers can be read by a
few instructions only, thus making them worthless for expression evaluation.
When common subexpression elimination and instruction scheduling is
performed, register pressure is quite high and frequently spilling is required.
Hence, it is difficult to allocate local variables in these register files. Currently,
such variables are held in the two temporary register files (B_ and T_registers),
thus requiring additional register_register moves if they are accessed. Larger
general_purpose registers (and the omission of the temporary registers) would
simplify the code generator and probably also improve the execution speed of
the generated code.
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Some empirical results on a small collection of typical subroutines and
programs are presented. All the measurements have been done on a Cray Y_MP
[Cray 1988]. If not specified otherwise, the results are given in clock cycles, the
cycle time is 6ns. Although only average values are presented here, the results
may not be very accurate: since the Cray Y_MP is a multi_processor
shared_memory system, a running process may be delayed because of memory
bank conflicts caused by other processors. The estimated relative error is
5−10%.

6.1 BLA Subprograms

The Basic Linear Algebra Subprograms or BLAS for short [Lawson 1979] have been
very successful and are used in a wide range of numerical software including
packages such as Linpack (see Section 6.2). They have become a de facto
standard for elementary vector operations. In the following a collection of
measurements made for four frequently used BLA procedures, namely sscal,
saxpy, sasum and sdot is shown (cf. Appendix B.1). In Oberon_V these
procedures reduce to simple "one_liners" which preferably are used directly
instead of calling the subroutine.

Table 6.1 shows the measurements for these four BLA procedures, different
vector lengths (n) and different (combinations of) compiler options: /x means
without index checks, /i turns instruction scheduling (IS) off, /c disables
common subexpression elimination (CSE) and /ic is without CSE and IS. All
times are given in clock cycles per element. The right_most column shows the
results obtained with the Cray Fortran compiler cft77. To obtain comparable
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results, a one_to_one translation of the Oberon_V BLA procedures into Fortran
subroutines but not the Fortran BLAS library has been used, because this library
is partially hand_tuned. The Fortran compiler also generates vector instructions
for these subroutines. Furthermore, different optimizations including CSE and IS
are performed, but no index checks are generated by cft77.

a) 100'000 1.6 1.5 1.7 1.5 1.4 1.5

10'000 1.6 1.5 1.5 1.5 1.4 1.5

1'000 1.9 1.5 1.7 1.7 1.6 1.6

100 4.1 2.5 4.0 5.7 3.5 3.1

10 31.7 20.2 38.3 48.0 28.5 23.1

n sscal sscal/x sscal/i sscal/c sscal/ic Fortran

b) 100'000 1.5 1.5 1.8 1.5 1.5 1.5

10'000 1.6 1.5 1.6 1.5 1.6 1.5

1'000 1.8 1.8 1.9 2.0 2.2 1.6

100 5.0 3.6 5.1 5.6 5.3 3.4

10 42.3 26.2 46.8 60.2 44.3 17.9

n saxpy saxpy/x saxpy/i saxpy/c saxpy/ic Fortran

c) 100'000 2.1 2.1 2.1 2.3 2.1 1.1

10'000 2.4 2.3 2.3 2.6 2.3 1.2

1'000 3.9 3.7 3.9 4.6 3.8 1.5

100 20.7 18.5 23.0 20.6 19.5 6.3

10 183.9 165.3 189.5 181.4 176.1 43.3

n sasum sasum/x sasum/i sasum/c sasum/ic Fortran

d) 100'000 2.3 2.3 2.5 2.3 2.4 1.2

10'000 2.4 2.5 2.6 2.5 2.5 1.3

1'000 4.3 4.0 4.3 4.2 4.2 1.7

100 21.1 19.8 20.9 21.2 21.0 7.5

10 185.1 174.0 189.7 189.9 187.6 51.2

n sdot sdot/x sdot/i sdot/c sdot/ic Fortran

Table 6.1 Execution Times for BLA Subroutines (vector code, in clock cycles/element)

The measurements include the times for the procedure calls and, notably, also
for index checks of arguments (constructed arrays, see Section 3.9). Thus, the
execution times for vectors with small n (n # 100) are completely dominated by
the procedure call overhead (see also Table 6.2). The best results are obtained
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when index_checks are disabled. However, because index checks are performed
only once before executing the ALL statement, for larger n no significant
difference is noticed anymore. Also the effect of the optimizations disappears
for large n, which is a clear indication that they influence mostly the (scalar)
code for procedure calls, index checks and loop initialization. When compared
with Fortran, for n 3 1000 the same or even better results are obtained for sscal
and saxpy (Table 6.1 a) and b). In case of sasum and sdot (Table 6.1 c) and d)
however, only half the execution speed of the corresponding Fortran code is
achieved. It seems that this difference is mainly due to a better but also more
complicated code pattern for reduction loops generated by the Fortran compiler
(the Fortran code proceeds in steps of 128 instead of 64 vector elements and
uses two vector registers for the partial sums; see also Section 3.8.2).

Table 6.2 shows the timings for the same BLA procedures, when no vector
instructions are used (compiler option /v) but scalar code is generated for the
ALL statements and the SUM function. The numbers in the right_most column
(loops) have been measured for conventionally implemented BLA procedures
using WHILE loops instead of ALL statements.

a) 100'000 40.5 40.4 56.2 42.4 60.1 74.3

10'000 40.3 40.4 56.2 42.4 60.2 74.3

1'000 40.5 40.7 56.6 42.8 60.4 74.6

100 43.0 43.1 58.9 45.3 63.1 77.4

10 68.3 66.1 84.1 67.0 88.9 104.1

n sscal/v sscal/vx sscal/vi sscal/vc sscal/vic loops

b) 100'000 49.1 49.6 80.4 52.0 85.3 99.3

10'000 49.2 50.0 80.4 52.0 85.4 99.4

1'000 49.5 50.5 80.6 52.4 85.8 99.6

100 52.6 56.1 83.6 55.5 89.3 102.6

10 83.9 116.3 115.2 87.4 123.8 130.4

n saxpy/v saxpy/vx saxpy/vi saxpy/vc saxpy/vic loops

c) 100'000 41.4 41.3 49.4 41.9 51.3 73.6

10'000 41.5 41.4 49.2 41.3 51.3 73.7

1'000 41.7 41.5 49.6 41.3 51.5 73.9

100 43.3 43.0 51.3 43.2 53.9 77.2

10 59.6 57.8 67.3 75.4 76.1 116.1

n sasum/v sasum/vx sasum/vi sasum/vc sasum/vic loops
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d) 100'000 57.4 60.5 66.5 57.5 68.4 101.3

10'000 57.6 60.6 66.7 57.9 68.5 101.3

1'000 57.9 62.1 67.1 58.1 68.8 101.5

100 60.5 63.4 69.7 61.1 71.6 103.5

10 84.6 83.9 94.1 91.3 99.0 123.5

n sdot/v sdot/vx sdot/vi sdot/vc sdot/vic loops

Table 6.2 Execution Times for BLA Subroutines (scalar code, in clock cycles/element)

First of all, when comparing these numbers with Table 6.1, the tremendous
speed_up obtained by using vector instructions becomes obvious. In this case
the BLA procedures are about 25 times faster than when using scalar
instructions only. Secondly, even if no vector instructions are available, the
scalar code for ALL statements is about 1.85 times faster then the code
generated for conventional WHILE loops (the x/v column has been compared
with the loops column for n = 100'000). This improvement is due to the fact
that usually no index checks are performed within the ALL statement but only a
few checks are necessary before executing the ALL statement (Section 3.9).
Furthermore, the translation scheme for ALL statements automatically reduces
expensive address computations for array elements to pointer arithmetics
(Section 3.7).

For scalar code, also the effect of common subexpression elimination and
instruction scheduling becomes significant: CSE alone yields a speedup of 1.34
(columns /v and /vi for n = 100'000). The effect of IS alone is marginal (1.03,
columns /v and /vc for n = 100'000) but together a speedup of 1.41 is achieved
(columns /v and /vic for n = 100'000). The small effect of IS is due to the
relative short basic blocks in all four procedures.

6.2 Linpack Subroutines

Linpack is a collection of Fortran subroutines which analyze and solve various
systems of simultaneous linear algebraic equations [Dongarra 1979]. Two
Linpack procedures have been translated one_to_one from Fortran to Oberon_V
and their performance has been measured. The procedures sgefa (single
precision general factorization) and sgesl (single precision general solver) are
used to solve n simultaneous linear equations Ax = b where A is an n by n
matrix and x and b are two vectors of length n. The corresponding Oberon_V
procedures may be found in Appendix B. Tables 6.3 and 6.4 show normalized

execution times in clock cycles, i.e. the execution times have been divided by
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the following values:

for sgefa: n3/3
for sgesl: n2

These values roughly estimate the number of "axpy_operations" executed by
sgefa and sgesl, i.e. the number of assignment statements of the form y[i] :=
a*x[i] + y[i]. For example, a value 1.8 indicates that 1.8 clock cycles have been
used on average for an axpy_operation.

1000 2.0 1.8 2.5 2.2

900 2.0 1.8 2.7 2.2

800 2.1 1.9 2.8 2.2

700 2.2 2.0 2.9 2.3

600 2.3 2.0 3.2 2.3

500 2.4 2.1 3.5 2.3

400 2.7 2.3 4.0 2.4

300 3.1 2.6 4.9 2.5

200 3.8 3.2 6.5 2.7

100 6.3 5.0 11.8 3.7

n sgefa sgefa/x sgefa/ic Fortran

Table 6.3 Execution Times of sgefa (in clock cycles/axpy_op)

If index checks are omitted (sgefa/x) an average speedup of 1.15 is achieved.
Again, for larger n the effect of index checks becomes smaller. On the other
hand, the effect of CSE and IS is quite high: both optimizations yield an average
speedup of almost 1.47 (for all n, columns sgefa and sgefa/ic). When compared
with Fortran, the Oberon_V code (sgefa/x) is slower for small n (n < 300) but
the same or even better performance is achieved for larger n. In general, much
better scalar code is generated by the Fortran compiler. This also explains the
leading position of Fortran for small n; an observation made before (Section
6.1). However, a detailed investigation of these effects is beyond the scope of
this thesis.
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1000 1.9 1.8 2.4 1.4

900 2.0 1.8 2.5 1.4

800 2.1 1.9 2.6 1.4

700 2.2 1.9 2.7 1.5

600 2.2 2.0 2.9 1.5

500 2.4 2.1 3.2 1.6

400 2.7 2.3 3.6 1.7

300 3.1 2.5 4.3 1.9

200 3.8 3.1 5.8 2.3

100 6.2 4.8 10.2 3.5

n sgesl sgesl/x sgesl/ic Fortran

Table 6.4 Execution Times of sgesl (in clock cycles/axpy_op)

In Table 6.4 essentially the same results as in Table 6.3 can be observed. The
improvement obtained by omitting index checks decreases for large n and the
speedup gained by CSE and IS is 1.35 on average. For n = 1000, every 2 clock
cycles an axpy operation containing two floating_point operations is performed
by sgefa. For a cycle time of 6ns this corresponds to a performance of
167MFlops. Together with sgefa, a system of 1000 simultaneous linear
equations can be solved in approximately 4s.

In Fortran arrays are mapped to memory in column_major order, i.e.
consecutive elements of a matrix column are mapped to consecutive memory
words. Thus, if an algorithm processes a matrix column_wise, usually the vector
stride is one. In Oberon_V arrays are mapped in row_major order and hence the
stride of a column vector is usually greater than one. Accessing such vectors
may lead to memory bank conflicts and hence to significant delays (for an
introduction into interleaved memory systems see for example [Hennessy
1990]). Indeed, the Linpack subroutines essentially rely on the array mapping of

Fortran and they perform badly for certain values of n if they are translated to
Oberon_V in a one_to_one way. However, instead of rewriting all algorithms
such that they process rows instead of columns, the same effect can be
obtained easily in Oberon_V by transposing the matrix using an array
constructor:

PROCEDURE Work (VAR a: ARRAY OF ARRAY OF REAL, ...);

(* do anything with a *)

ENDWork;

BEGIN ...

Work([i, j = 0 .. LEN(a)−1: a[j, i]], ...); ...
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If a certain array mapping is required within a procedure (e.g. column_major
order instead of row_major_order), the appropriate array is simply passed as a
parameter. When the procedure is called, the desired mapping (e.g. a
transposition) is performed using an array constructor. Note that this does not
mean that the array is copied, but only that the array mapping is changed which
does not impose any additional run_time costs. Using this technique, various
kinds of memory mappings can be tested without changing an algorithm.

6.3 Compiler Data

Finally, a survey of the size and the compilation speed of the Oberon_V
compiler OV is given. Table 6.5 illustrates the sizes of individual modules in
(non_empty) lines of code (Lines) and in the number of statements (Stats). The
size of the object code for the Ceres_2 workstation [Heeb 1988] containing a
NS32532 CPU is given in KB. The right_most column shows the object code
sizes of corresponding modules of the Oberon_2 compiler NOP2 for the same
machine [Mössenböck 1991][Crelier 1990]. Apparently, when ignoring module
OVV, both compilers have the same size. In contrast, the size of the Cray
Fortran compiler cft77 is 4.7MB which is more than 50 times the size of the
Oberon_V compiler.

Total 5970 6010 90.2 74.5

OV User Interface 80 80 1.3 2.0 (NOP2)

OVC Tree Traversal 620 620 10.1 6.6 (NOPV)

OVE Expressions 1400 1400 18.7 17.4 (NOPC)

OVV Virtual Code 700 790 16.2 − −

OVO Object Files 430 470 7.7 8.8 (NOPL)

OVP Parser 770 850 9.3 11.4 (NOPP)

OVT Table Handler 1670 1470 23.6 24.9 (NOPT + NOPB)

OVS Scanner 300 330 3.3 3.4 (NOPS)

Module Functionality Lines Stats Code NOP2

Table 6.5 Size of the Oberon_V compiler OV (in KB)

In order to determine the compilation speed of the Oberon_V compiler,
procedures of a longer module (containing a collection of Linpack procedures)
have been removed step_by_step and the time for its compilation with respect
to different compiler options has been measured (Table 6.6). Overall, the
compilation time is nearly linear in the program length for all options (the
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linear regression coefficient r is 0.98). Surprisingly, if CSE is disabled (option /c)
the compilation speed decreases! This is due to the fact that the compilation
time is also linear in the length of the generated code. For modules with many
common subexpressions as it is the case here, CSE significantly reduces the
length of the generated code and thus also the compilation time. In the normal
case (no options), a compilation speed of about 120 lines/s is achieved on the
Ceres_2 (NS 32532, 25MHz) and 620 lines/s on a DECstation 5000 (MIPS
R3000, 25MHz). The Cray Fortran compiler translates up to 300 lines/s on the
Cray Y_MP (167MHz).

186 1.7 1.7 1.7 1.9 1.9

321 2.6 2.6 2.6 3.0 3.0

501 3.8 3.8 3.9 4.3 4.4

828 6.0 6.0 6.1 6.9 6.9

1143 8.3 8.3 8.3 9.4 9.4

1146 10.1 10.1 10.1 11.7 11.7

Lines no options /v /i /c /ic

Table 6.6 Compilation Speed for different Compiler Options (in s)



7 Summary and Conclusions

Section 7.1 gives a brief survey of our achievements, whereas Section 7.2 points
out some features that could be improved. Finally, conclusions are draw in
Section 7.3

7.1 What has been achieved

We have introduced two language constructs, namely the ALL statement and a
new form of array constructors, both oriented towards the programming of
numerical applications for vector computers. The constructs have been
integrated into a new programming language called Oberon_V, a descendant of
the programming language Oberon [Wirth 1988a]. A possible implementation
scheme has been described and an experimental Oberon_V compiler for the
Cray Y_MP vector computer has been constructed. We have implemented a few
typical applications in Oberon_V and have compared their performance with
corresponding Fortran solutions.

The ALL statement allows to express directly independence of a sequence of
assignment statements and thus can always be translated into vector
instructions, as long as no conditional expressions occur. Unfortunately, a
compiler cannot check in general whether assignments enclosed in an ALL
statement are independent or not. Thus, it is the programmer's responsibility to
prove its correct usage. In our experience, for practical cases the required
independence property is rather easy to show or even obvious. For difficult
cases however a compiler will not be able to solve the problem instead. We
may compare this situation with the use of a conventional loop where (in the
general case) also the programmer alone can ensure its termination.
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The provability of programs cannot be measured objectively. However, the
correctness of programs using ALL statements is easier to prove than the
correctness of programs using corresponding loops, because overspecifications
such as the execution order or additional statements for incrementing
induction variables can be avoided. Furthermore, since a programmer may
explicitly state that parts of a program can be executed in parallel, a reader of
the program is also directly informed about this fact and thus may gain a
deeper insight into an algorithm.

The translation of ALL statements requires neither complicated analysis
techniques nor time_consuming optimizations but is obtained by a simple
transformation of its internal representation and a second traversal of this data
structure for final code generation. For typical applications the execution speed
of the generated code is comparable with the execution speed of the code
generated by the Cray Fortran compiler. We have implemented additional
optimizations on the instruction level, such as common subexpression
elimination and a simple instruction scheduling algorithm for scalar
instructions. Though the effect of these optimizations tends to be completely
overshadowed by the effect of vector instructions as long as only ALL
statements are considered. However, we must not conclude that such
optimizations are worthless: if only one half of the executed code of a program
can be vectorized due to Amdahl's Law, a speedup of a factor two may be
achieved in the best case, but only if the vectorized program portion would
execute in zero time. A reasonable scalar performance is therefore required to
obtain good results.

Array constructors are a powerful and clean construct to specify arbitrary
subarrays as procedure arguments. Similar mechanisms exist in other
languages, but they usually do not offer the same flexibility or are inacceptably
inefficient for the aim pursued here (e.g. the call_by_name mechanism of Algol
60 [Naur 1960]). The implementation of array constructors goes hand_in_hand
with the implementation of ALL statements. Indeed, almost the entire
compiling machinery introduced for ALL statements has been reused to
implement array constructors. Since array constructors can only be used as
arguments for open array parameters, they only impose additional costs if the
extra flexibility is really needed.

The Oberon_V cross_compiler has been implemented in Oberon and runs
under the Oberon System [Wirth 1988b]. It consists of some 6000 lines of
code or about 90KB object code for the Ceres_2 workstation [Heeb 1988]. The
compilation speed is about 120 lines/s on the Ceres_2 (NS 32532, 25MHz) and
620 lines/s on a DECstation 5000 (MIPS R3000, 25MHz). These figures
compare favorably with the Fortran_77 compiler on the Cray with about 4.7MB
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object code size and a compilation speed of 300 lines/s (Cray Y_MP, 167MHz).

7.2 What could be improved

1. An ALL statement describes a set of assignment sequences that must be
independent of each other, i.e. two different assignment sequences must not
modify the same variable. Thus, if in a particular sequence a temporary value is
computed which is to be used later in the same sequence, an array with the
same dimensionality as the ALL statement must be introduced. If it were
possible to declare some kind of "local variables" within ALL statements, such
an array would be unnecessary. The following example illustrates a possible
solution:

ALL r = a .. b WITH t: REAL DO

t := a[r] * b[r];

b[r] := t * c1;

c[r] := t + c2

END

The identifier t is visible within the scope of the ALL statement only. For
different values of the range identifier r, different variables are denoted by t. A
similar approach has been chosen in the FORALL statement in Vienna Fortran
[Zima et. al. 1992], a Fortran extension oriented towards multiprocessor
architectures with distributed memory.

2. We have described the translation of an ALL statement into a sequence of
vector or scalar instructions for a single_processor machine. It should not be too
complicated to generate code for a multiprocessor machine (e.g. the Cray Y_MP
can be equipped with up to eight processors). The key idea is simple: for a
machine with n processors, the index set specified by the range declaration of
an ALL statement is divided into n subsets, e.g. by dividing the outermost range
into n subranges. For example, an ALL statement of the form

ALL r = a .. b DO S(r) END

had to be divided into n ALL statements

ALL r1 = a1 .. b1 DO S(r1) END

ALL r2 = a2 .. b2 DO S(r2) END

...

ALL rn = an .. bn DO S(rn) END
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with ak = bk−1 + 1 (2 # k # n), a1 = a and bn = b. Each of these ALL statements
could be executed on a different processor node. At the end, all processes have
to be synchronized and the main processor would take control again. Because
no inter_process communication is required during the execution of the ALL
statements, a speedup almost proportional to the number of processors could
be possible.

3. ALL statements allow only a restricted form of conditional assignments via
the predefined function SELECT. The point is, whether this offers sufficient
flexibility for more complicated applications. However, more powerful
constructs do require either a significantly more complicated translation or
cannot be tailored to vector instructions at all.

7.3 Conclusions

Much effort spent today on advanced compiler technology goes into the
development of techniques aiming at the improvement of the execution speed
of generated code. These techniques may be roughly divided into two
categories: a) machine_specific techniques for the better use of limited resources
(such as registers or functional units) of a particular target machine, and b)
machine_independent analyzing techniques to reveal inherent properties of a
particular program (such as independence of statements), which are used later
to automatically rewrite the program so that it can be mapped on special
machine architectures. In general, machine specific restrictions cannot be
circumvented by suitable coding or by choosing a better programming language
(it is neither desirable nor reasonably possible to ask the programmer to
perform instruction scheduling). Thus, the classical optimization techniques of
category a) are justified if a reasonable ratio between cost and benefit is
achieved. Techniques of category b) stand in strong contrast to category a): a
compiler tries here to reveal program properties that the programmer has been
even aware of (i.e. the compiler does reverse_engineering). If taking advantage of
such properties means a benefit in an order of magnitude, a programming
language must provide a means to explicitly specify this property. We would
like to quote here C. A. R. Hoare, who wrote 20 years ago in a similar context:
"What a pity that the designers of these languages take such trouble to give
such trouble to their users and to themselves." [Hoare 1974].

If we replace an ordinary loop by an ALL statement without changing the
effect of the program, we can observe two points: first of all, the program
becomes simpler because unnecessary specifications (such as an iteration
order) are removed. If it was a WHILE loop that had been replaced, the
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decrease of complexity is immediately noticable: termination of the loop is not
a question any more. Secondly, as an immediate consequence of the first point,
a compiler has more freedom in the translation of the statement as it must
observe fewer constraints. Thus, it may use this freedom to generate better code
but it is not forced to do so, which is an important aspect. We have a similar
situation with Dijkstra's guarded commands: if several guards evaluate to true, it
is not determined which statement sequence with a valid guard is going to be
executed. Again, the absence of an explicitly specified order simplifies
reasoning about the program. A compiler accepting guarded commands may
take advantage of this additional freedom to generate more efficient code, but it
may also use the source text order to ease code generation. Future
programming languages should better exploit this relationship.
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Appendix A:

The Programming Language Oberon_V

1 Introduction

Oberon_V is a general_purpose programming language in the tradition of the
Algol family. It evolved from Oberon and provides mainly the same capabilities;
however, Oberon_V is simpler in some aspects. Its principal new features are
the possibility to express parallelism in assignments and a construct to specify
subarrays. The former allows for efficient translation into vector instructions
(which also explains the name of the language), while the latter is an essential
prerequisite for the programming of numerical applications. Furthermore, the
concept of the side effect free function has been added.

This report defines Oberon_V. It serves as a reference manual for
programmers and compiler writers but is not intended as a tutorial. What
remains unspecified is mostly left so intentionally. Within the (informal)
definition of new terms, references to terms defined elsewhere are enclosed in
brackets [1].

2 Syntax

A language is a set of finite sentences, namely the sentences that are
well_formed according to its defining grammar. In Oberon_V these sentences are
called compilation units. Each unit is a sequence of words (lexical entities) from
a vocabulary. The lexical entities are called symbols in Oberon_V. They are
composed of sequences of characters.

The syntax of a language is defined by a set of productions; i.e. rules which
specify how a syntactic entity is composed of other entities. The syntax of
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Oberon_V is described using an Extended Backus_Naur Formalism (EBNF):
brackets [ and ] denote optionality of the enclosed sentential form, braces { and
} denote its repetition (possibly zero times). Alternative forms are separated by
vertical bars |. Syntactic entities (non_terminal symbols) are denoted by English
words starting with a capital letter (e.g. Statement). Symbols of the language
vocabulary (terminal symbols) are either denoted by English words starting with
a small letter (e.g. number), or are written completely in capital letters (e.g.
BEGIN), or are denoted by strings enclosed in double quotes (e.g. ":=").
Productions are marked by a bold vertical bar at the left margin of a line.

3 Vocabulary and Representation

Each symbol is a well_formed sequence of characters from an alphabet which is
a subset of the ASCII set. The following lexical rules must be observed: any
number of blanks, new_line characters and comments can appear between two
symbols; they are required only when essential for the separation of two
consecutive symbols. A comment is any sequence of characters enclosed in (*
and *) brackets and may be nested. Comments do not affect the meaning of a
program. Capital and small letters are considered as being distinct. There are
the following classes of symbols:

3.1 Identifiers

Identifiers are sequences of letters and digits. The first character must be a
letter. Two identifiers are equal if they consist of the same sequence of
characters.

ident = letter {letter | digit}.
letter = "A" ... "Z" | "a" ... "z".
digit = "0" ... "9".

Examples:

pi x1 Node Matrix WriteReal
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3.2 Numbers

Numbers are either integer, real or imaginary numbers. They are always
unsigned. Integers are sequences of digits and may be followed by a suffix
letter. If no suffix is specified, the representation is decimal. The suffix H
indicates hexadecimal representation. Real numbers are sequences of digits
containing a decimal point. Optionally they may also contain a decimal scale
factor. The letter E is then pronounced as "times ten to the power of". Imaginary
numbers are denoted by real numbers followed by the suffix letter i which is
pronounced as "multiplied by the imaginary number i" (with i*i = −1). They are
of type COMPLEX.

number = integer | real ["i"].
integer = digit {digit} | digit {hexDigit} "H".
real = digit {digit} "." {digit} [scaleFactor].
scaleFactor = "E" ["−"] digit {digit}.

Examples:

Number Value Type

1993 1993 INTEGER
0F7H 247 INTEGER
17.4 17.4 REAL
9.806665E−6 0.000009806665 REAL
4.5E2i 0.0 + 450.0 * 1.0i COMPLEX

3.3 Character Constants

Character constants are either denoted by enclosing a character in single quotes
(') or by the ordinal number of the character in hexadecimal notation followed
by the letter X. The enclosed character must be in the range " " ... "˜" but must
not be a single quote.

character = "'" char "'" | digit {hexDigit} "X".
char = " " ... "˜".
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Examples:

'A' 'z' 0X 27X '˜'

3.4 Strings

Strings are sequences of characters enclosed in double quotes (") which cannot
occur within the string. A string is always terminated by an (invisible) 0X
character. The number of characters (including the terminating 0X character) is
called the length of the string. The length of the empty string "" is 1.

string = """ {char} """.

Examples:

"Oberon_V" "Don't panic!" ""

3.5 Operators and Delimiters

Operators and delimiters are the special characters, character pairs or reserved
words listed below. These reserved words consist exclusively of capital letters
and cannot be used in the role of identifiers.

+ = # ALL END RECORD
− < >= ARRAY IF REPEAT
* > <= BEGIN IN RETURN
/ ( ) CASE IS THEN
& [ ] CONST MOD TYPE
| { } DIV MODULE UNTIL
˜ : := DO NIL VAR
% , ; ELSE OF WHILE
↑ . .. ELSIF PROCEDURE
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4 Declarations and Scope Rules

A declaration introduces an identifier and associates it with an object. Objects
are either constants, types, variables, record fields, procedures or ranges. After
its introduction the identifier denotes the associated object. The program text
where this association is valid is called the scope of the identifier. The scope
extends textually from the introduction of the identifier to the end of the
(module or procedure) block to which the declaration belongs − and hence to
which the identifier is local − but excludes the scopes of equal identifiers
declared in nested blocks. A block comprises the (module or procedure)
heading and the succeeding body [8][12]. Within a given scope, no identifier
must be declared twice. The following exceptions complete the scope rules:

1. Field identifiers of a record declaration [6.3] are valid in field
designators [10.3] only.

2. An identifier T used within a pointer type [6.4] of the form ↑T can be
declared textually following the use of the pointer type but must lie
within the same block in which ↑T is used.

3. The scope of range identifiers [9] extends textually from the
introduction of the identifier to the end of the enclosing array
constructor [10.6] or ALL statement [11.9].

An identifier declared local to a module block may be followed by an export
mark (*) in its declaration. The export mark indicates that the identifier and
hence the associated object is exported. In this case, the identifier may be used
in other modules, if they import the declaring module [12]. The identifier is
then prefixed by the identifier denoting its module. The prefix and the identifier
are separated by a period and together are called a qualified identifier. Two
qualified identifiers are equal if both the module prefix and the identifier
denoting the imported object are equal [3.1].

IdentDef = ident ["*"].
QualIdent = [ident "."] ident.

The following identifiers are predefined; they may be thought of beeing
declared in an additional scope enclosing all other scopes. Their meaning is
defined in the indicated sections.
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ABS [8.2] EXCL [8.2] NEW [6.4]
ASL [8.2] FALSE [6.1] ODD [8.2]
ASR [8.2] FLOOR [8.2] ORD [8.2]
ASSERT [8.2] HALT [8.2] PROD [8.2]
BOOLEAN [6.1] IM [8.2] RE [8.2]
CEILING [8.2] INC [8.2] REAL [6.1]
CHAR [6.1] INCL [8.2] SELECT [8.2]
CHR [8.2] INTEGER [6.1] SET [6.1]
COMPLEX [6.1] LEN [8.2] SUM [8.2]
DEC [8.2] MAX [8.2] TRUE [6.1]
EPS [8.2] MIN [8.2] TRUNC [8.2]

5 Constant Declarations

A constant declaration introduces an identifier and associates it with the value
of a constant expression. A constant expression is any expression whose
operands consist only of literals, set constants, identifiers denoting constants,
the predefined identifiers TRUE and FALSE as well as applications of predefined
functions to constant expressions.

ConstantDeclaration = IdentDef "=" ConstExpression.
ConstExpression = Expression.

Examples:

M = 8
N = M*M
CR = 0DX
pi = 3.14159265
all = /{}

6 Type Declarations

A data type determines the set of values which variables of that type may
assume, and the operators that are applicable. A type declaration associates a
(type) identifier with a type. There are unstructured and structured types.
Unstructured types are either basic types denoted by predefined identifiers,
pointer or procedure types. Structured types, namely arrays and records, define
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also the structure of variables of this type, i.e. the types and possibly the names
of their components.

TypeDeclaration = IdentDef "=" Type.
Type = QualIdent | ArrayType | RecordType | PointerType | ProcedureType.

If two (possibly qualified) type identifiers x and y are equal [4] or if they are
declared to denote equal types in a type declaration of the form x = y, then the
types T(x) and T(y) denoted by them are equal.

Examples:

Ident = ARRAY 16 OF CHAR
RealVector = ARRAY OF REAL
Matrix = ARRAY 100, 100 OF COMPLEX
List = RECORD END
Pair = RECORD (List)
car, cdr: ↑List

END
Symbol = RECORD
mark: INTEGER;
left, right: ↑Symbol;
name: ARRAY 32 OF CHAR;
bound: ↑List

END
Function = PROCEDURE (x: REAL): REAL

6.1 Basic Types

There are 6 basic types in Oberon_V. The corresponding predefined identifiers
and the values comprised by its associated types are the following:

BOOLEAN the truth values TRUE and FALSE
CHAR all characters between 0 and MAX(CHAR)
SET all sets containing elements between 0 and MAX(SET)
INTEGER all integers between MIN(INTEGER) and MAX(INTEGER)
REAL all real numbers between MIN(REAL) and MAX(REAL)
COMPLEX all complex numbers x + y * 1.0i with REAL x and y
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The last three types are called numeric types and they form a type hierarchy; i.e.
values of the smaller type are included by the larger type.

INTEGER L REAL L COMPLEX

6.2 Array Types

An array is a structured type composed of a fixed number of elements which are
all of the same type, called the element type. The element type must not be a
structured type which is or contains the declared array itself. The number of
elements of an array is called its length. The elements are designated by indices
which are integers between 0 and the length minus 1. The number of
dimensions of an array is the number of dimensions of the element type plus 1.
A type which is not an array has zero dimensions.

ArrayType = ARRAY [Length {"," Length}] OF Type.
Length = ConstExpression.

A declaration of an (n_dimensional) array of the form

ARRAY L1, L2 ... Ln OF T

is an abbreviation of the declaration

ARRAY L1 OF
ARRAY L2 OF
...
ARRAY Ln OF T

Arrays declared without length are called open arrays. An open array must not be
a component of a type which is not an open array.

Examples:

ARRAY OF CHAR
ARRAY N−1 OF INTEGER
ARRAY 100, 100 OF COMPLEX
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6.3 Record Types

A record is a structured type composed of a fixed number of components of
possibly different types. The record type definition specifies for each
component, called field, its type and an identifier which denotes the field.
Within a record declaration, no field identifier must be declared twice. The type
of a field must not be a structured type which is or contains the declared record
itself. If a record type is exported [4], field identifiers that are to be visible
outside the declaring module must be marked too. They are called public fields;
the unmarked components are called private fields.

RecordType = RECORD ["(" BaseType ")"] [FieldList {";" FieldList}] END.
BaseType = QualIdent.
FieldList = IdentList ":" Type.
IdentList = IdentDef {"," IdentDef}.

Record types are extensible, i.e. a record type T1 can be declared as a direct

extension of another record type T which is then called its direct base type. The
extended type T1 consists of the fields of its base type and of the fields which
are declared in T1. A field identifier declared in a (direct) extension must be
different from any identifier declared in any of the base type(s) of the record.

T = RECORD ... END
T1 = RECORD (T) ... END

A record type T1 extends a type T, if it is equal to T or if it directly extends an
extension of T. Conversely, a record type T is a base type of T1, if it is equal to
T1 or if it is a direct base type of a base type of T1.

Examples:

RECORD
hour, min, sec: INTEGER

END
RECORD
name: ARRAY 32 OF CHAR;
exported: BOOLEAN;
mode: INTEGER;
value: REAL

END
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6.4 Pointer Types

The pointer type P = ↑T comprises the set of all pointers to variables of type T,
and it includes the value NIL which points to no variable at all. The pointer type
is said to be bound to T, and T is called the pointer base type of P. T must be a
structured type (i.e. an array or a record type). Two pointer types are equal, if
their base types are equal.

PointerType = "↑" Type.

If p designates a variable of type ↑T, where T is not an open array type, then a
call of the predefined procedure NEW(p) allocates a new variable of type T and
the pointer to it is assigned to p. If p designates a pointer variable bound to an
n_dimensional open array, then the call NEW(p, e1, e2, ... en) allocates a new
n_dimensional open array variable with lengths given by the values of the
expressions e1, e2, ... en, and the pointer to this array is assigned to p. A variable
allocated by NEW is not local to any block.

6.5 Procedure Types

A procedure type P comprises the set of all procedures whose types are equal
to P and it includes the value NIL which denotes no procedure at all.

Two procedures have equal types, if all corresponding parameters and the
result types, if any, are equal. Two parameters are equal if they are of the same
kind [8.1], if they are denoted by equal identifiers and if they have equal types.

ProcedureType = PROCEDURE [ParameterList].

Examples (see also examples in [6]):

PROCEDURE
PROCEDURE (p: ↑List)
PROCEDURE (x: COMPLEX): REAL
PROCEDURE (VAR a: ARRAY OF INTEGER; scale: REAL)
PROCEDURE (p: ↑Symbol; cmp: PROCEDURE (x, y: REAL): INTEGER)
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7 Variable Declarations

Variable declarations introduce new variables by declaring an identifier and a
type for them. All variables whose identifiers appear in the same identifier list
have equal types. The type of a variable (which is not a parameter) must not be
an open array [6.2]. A structured variable is a variable which has a structured
type [6]. It consists of component variables (i.e. array elements or record fields)
as specified by its type.

VariableDeclaration = IdentList ":" Type.

Record variables have both a static and a dynamic type. The former is the type
with which they are declared and which is simply called their type; the latter is
the type which their values may assume at run_time. Variable parameters of
record type and record variables referred to by pointers may have a dynamic
type which is an extension of their static type.

Examples (see also examples in [5] and [6]):

ch: CHAR
i, j, k: INTEGER
x, y: REAL
u, v: COMPLEX
ok: BOOLEAN
s: SET
f: Function
A: Matrix
p, q: ↑Pair
root: ↑Symbol
index: ARRAY 100 OF INTEGER
a, b, c: ARRAY N OF REAL
id: Ident

8 Procedure Declarations

A procedure declaration consists of two parts, a procedure heading and a body.
The heading specifies the procedure identifier and the procedure type
(determined by the parameters and the result type, if any). The body contains
declarations and statements that are executed, when the procedure is called.



164 Appendix A: The Programming Language Oberon_V

The procedure identifier must be repeated at the end of the procedure
declaration.

ProcedureDeclaration = ProcedureHeading ";" Body END ident.
ProcedureHeading = PROCEDURE IdentDef [ParameterList].
ForwardDeclaration = PROCEDURE "↑" IdentDef [ParameterList].
Body = DeclarationSequence [BEGIN StatementSequence].
DeclarationSequence =
[CONST {ConstDeclaration ";"}]
[TYPE {TypeDeclaration ";"}]
[VAR {VarDeclaration ";"}]
{ProcedureDeclaration ";" | ForwardDeclaration ";"} .

All objects declared in a procedure body are local to it [4]. Values of local
variables are undefined upon entry to a procedure. Objects declared in the
environment of the procedure are also visible within the procedure, with the
exception of those objects that have equal identifiers as locally declared objects.
The use of the procedure identifier in a call within its declaration implies
recursive activation of the procedure.

Procedures are either proper procedures or function procedures. The former
represent an (abstract) action while the latter compute a value. The execution of
a function procedure must terminate with an explicit RETURN statement [11.9]
which also denotes the value to be returned. The result type cannot be a
structured type. Function procedures must produce no side effects; i.e. within a
function procedure the following restrictions apply:

1. no value must be assigned to a variable which is not local, and
2. no proper procedure (except predefined ones) must be called.

A procedure identifier may be introduced by a forward declaration. In this case,
the scope of the procedure identifier extends from its introduction to the end of
the block to which the forward declaration belongs. The actual declaration
containing the procedure body must follow later within the same block. The
procedure types of both declarations must be equal [6.5].
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8.1 Parameters

Parameters are identifiers declared in a parameter section of a procedure
heading. They are local to the procedure block and they denote the arguments
specified in the procedure call. The association between parameters and
arguments is established, when the procedure is called.

There are two kinds of parameters, namely value and variable parameters,
indicated in the parameter section by the absence or presence of the reserved
word VAR. Value parameters denote local variables to which the value of the
associated argument is assigned as initial value. Variable parameters are
associated with arguments that must be variables and they denote these
non_local variables (i.e. a variable parameter is a local identifier for a non_local
variable).

ParameterList = "(" [ParameterSection {";" ParameterSection}] ")" [":" Type].
ParameterSection = [VAR] ident {"," ident} ":" Type.

The types of the parameters (i.e. the types of the variables denoted by the
parameters) are specified in the parameter sections; all parameters which
appear in the same parameter section are of the same parameter kind and have
equal types. The type of value parameters cannot be a structured type.

Examples of procedure declarations (see also examples of [6]):

PROCEDURE ReadInt (VAR x: INTEGER);
VAR n, s: INTEGER; ch: CHAR;

BEGIN s := 0; n := 0; Read(ch);
WHILE ch < 80X DO INC(n, ASL(ORD(ch), s)); INC(s, 7); Read(ch) END;
x := n + ASL(ORD(ch) − 192, s)

END ReadInt

PROCEDURE WriteInt (x: INTEGER);
BEGIN
WHILE (x < −64) OR (x > 63) DO
Write(CHR(x MOD 128)); x := x DIV 128

END;
Write(R, CHR(x + 192))

END WriteInt
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PROCEDURE saxpy (a: REAL; VAR x, y: RealVector);
BEGIN ALL i = 0 .. LEN(x)−1 DO y[i] := a * x[i] + y[i] END
END saxpy

PROCEDURE Size (p: ↑Symbol): INTEGER;
BEGIN
IF p = NIL THEN RETURN 0
ELSE RETURN 1 + Size(p.left) + Size(p.right)
END

END Size

8.2 Predefined Procedures

The following tables list the predefined procedures. Some of them are generic,
i.e. they apply to several types of arguments. x, y and n stand for expressions, v
stands for a variable and T for a type.

Function procedures:

Call Argument types Result type Function

ABS(x) INTEGER INTEGER absolute value of x
REAL REAL
COMPLEX REAL

ASL(x, n) x, n: INTEGER INTEGER x * 2n (n 3 0)
ASR(x, n) x, n: INTEGER INTEGER x DIV 2n (n 3 0)
ODD(x) INTEGER BOOLEAN x MOD 2 = 1
ORD(x) CHAR INTEGER ordinal number of x
CHR(x) INTEGER CHAR x = CHR(ORD(x))
EPS(x) REAL REAL small. real e: x + e > x
TRUNC(x) REAL INTEGER integer part of x
FLOOR(x) REAL INTEGER largest integer i with i # x
CEILING(x) REAL INTEGER small. integer i with i 3 x
RE(x) COMPLEX REAL real part of x
IM(x) COMPLEX REAL imaginary part of x
LEN(v, n) v: array INTEGER length of v in dim. n

n: INTEGER
LEN(v) v: array INTEGER LEN(v) = LEN(v, 0)
MIN(T) CHAR CHAR 0X
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SET INTEGER 0
INTEGER INTEGER smallest integer
REAL REAL smallest real number

MAX(T) CHAR CHAR largest character
SET INTEGER largest set element
INTEGER INTEGER largest integer
REAL REAL largest real number

SUM(x) n_dim. array of T T sum of all elements of v
T = numeric type

PROD(x) n_dim. array of T T prod. of all elements of v
T = numeric type

SELECT(n, x, y) n: BOOLEAN T if n then x else y
x, y: T (both arguments are
T = unstruct. type evaluated always)

Proper procedures:

Call Argument types Function

INC(v) INTEGER v := v + 1
DEC(v) INTEGER v := v − 1
INCL(v, x) v: SET; x: INTEGER v := v + {x}
EXCL(v, x) v: SET; x: INTEGER v := v / {x}
NEW(v) pointer type allocate v↑
NEW(v, x1, ... xn) v: ↑ n_dim. open array allocate array v↑

x1, ... xn: INTEGER with lengths x1, ... xn
HALT(n) integer constant terminate program execution
ASSERT(n) BOOLEAN terminate program

execution if ˜n

The interpretation of the argument x in HALT(x) is left to the underlying
operating system.

9 Range Declarations

Range declarations occur within array constructors [10.6] and ALL statements
[11.9] only. A range declaration introduces a range identifier and associates it
with a range a .. b, specified by two integer expressions a and b that must not
contain any range identifiers themselves. A range a .. b denotes the set of
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integers between a and b (inclusive). The number of integers denoted by a
range is called its length. A range declaration that introduces n range identifiers
is called n_dimensional. A range identifier may be used within an expression
[10.3].

RangeDeclaration = RangeList {"," RangeList}.
RangeList = ident {"," ident} "=" Range.
Range = Expression ".." Expression.

An (n_dimensional) range declaration of the form

r1, r2, ... rn = a .. b

is an abbreviation of the declaration

r1 = a .. b, r2 = a .. b, ... rn = a .. b

Examples:

r = M .. N
i, j, k = 0 .. LEN(A)−1
i = 1 .. M, j = 1 .. N
i, j = −10 .. 10

10 Expressions

An expression specifies the computation of a value; it consists of operands and
operators. The value of the expression is determined by applying the operators
according to their precedences to the values of the operands. Operands are
either literals, sets, designators, function calls or expressions.

10.1 Literals

Literals are numbers, character constants, strings and the value NIL. The value of
a literal is the value it represents.

Literal = number | character | string | NIL.
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10.2 Sets

A set represents a value of type SET by listing its elements between braces. The
elements must be integer values. The notation a .. b is an abbreviation for the
elements a, a+1, .. b. A set constant is a set where all elements are denoted by
constant expressions.

Set = "{" [Element {"," Element}] "}".
Element = Expression [".." Expression].

Examples:

{0, 4, 10} {i} {0 .. i} {i .. i+4, 42}

10.3 Designators

A designator is a qualified identifier [4] possibly followed by selectors or type
guards. The value of a designator denoting a constant is the value of the
constant. The value of a designator denoting a type or procedure is the denoted
type or procedure. A designator denoting a variable stands for this variable.
Within an array constructor [10.6] or an ALL statement [11.9], a range identifier
denotes any integer value within the associated range.

Designator = QualIdent {"[" ExpressionList "]" | "." | "↑" | "{" QualIdent "}"}.
ExpressionList = Expression {"," Expression}.

If A designates an array variable, then A[e] denotes the element of A whose
index is the current value of the expression e. A designator of the form
A[e1][e2] ... [en] may be abbreviated to A[e1, e2, ... en]. IF p designates a pointer
variable, then p↑ denotes the variable which is referenced by p. If r designates a
record variable, then r.f denotes the field f of r. Designators of the forms p↑.f
and p↑[e] may be abbreviated to p.f and p[e] respectively.

If the variable v is of record type [6.3], the type guard v{T} asserts that the
dynamic type of v is an extension of T. If v is a pointer type [6.4], v{T} asserts
that the dynamic type of v↑ is an extension of T. The static type of the
designator v{T} is then T (or ↑T respectively). If the assertion fails, the program
execution is aborted. The type guard is applicable, if
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1. v is a record variable parameter or v is a pointer (v 9 NIL), and if
2. the record type T is an extension of the static type of v (or v↑

respectively).

Examples (see also examples in [7]):

Designator Type

i INTEGER
A[i, 10] COMPLEX
p.car↑ List
q.cdr{Pair} ↑Pair
root.name[k] CHAR
f Function

10.4 Function Calls

A function call activates a function procedure [8]. The value of a function call is
the value returned by the function procedure. The call consists of a designator
denoting a function procedure followed by a possibly empty list of arguments
[10.5].

FunctionCall = Designator "(" [ArgumentList] ")".

Examples (see also examples in [7]):

f(x*pi)
Size(root)
TRUNC(x*x + y*y)

10.5 Arguments

Within a procedure, the arguments are denoted by their corresponding
parameters specified in the procedure declaration. The correspondence is
determined by the positions of the arguments and parameters within the
argument and parameter list.
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ArgumentList = Argument {"," Argument}.
Argument = Expression | ArrayConstructor .

There are two kinds of parameters, namely value and variable parameters [8.1].
In case of a value parameter, the corresponding argument must be an
expression. This expression is evaluated prior to the procedure call and the
resulting value is assigned to the value parameter. Argument and parameter
must observe the rules for assignments.

In case of a variable parameter, the corresponding argument must be a
designator or an array constructor [10.6] both denoting a variable, or a string
(since value parameters cannot have a structured type [8.1]). The parameter and
the argument type must be equal, except for record and open array parameters,
where the following rules apply:

1. If the type of the parameter is a record [6.3], the type of the argument
must be an extension of the parameter's type. After procedure
activation, the dynamic type of the parameter corresponds to the
dynamic type of the argument.

2. If the type of the parameter is an open ARRAY OF T [6.2], the type of
the argument may be any array with element type T1, where T and T1
are equal or the types T and T1 themselves observe this rule (with T as
parameter type and T1 as argument type).

3. If the type of the parameter is ARRAY OF CHAR, the argument may be
a string. The string is copied into an (anonymous) array variable which
is passed as argument instead.

10.6 Array Constructors

An array constructor is a range declaration [9] followed by an expression. An
array constructor consisting of an n_dimensional range declaration specifies an
array [6.2] with at least n dimensions. The range identifiers correspond to the
dimensions of the array in the order of their occurence in the range declaration.
The array lengths in each dimension are the lengths of the corresponding
ranges.

ArrayConstructor = "[" RangeDeclaration ":" Expression "]".
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An array constructor of the form

[r1 = ..., r2 = ..., ... rn = ... : E(r1, r2, ... rn)]

denotes an array of type ARRAY l1, l2, ... ln OF T, where the lk's are the lengths of
the ranges associated with the range identifiers rk (1 # k # n) and T is the type
of the expression E. The array element denoted by the indices i1, i2, ... in is the
element E(i1, i2, ... in), i.e. the value of the expression E(i1, i2, ... in) which is
obtained when all range identifiers rk are substituted by ik (1 # k # n). The
number of dimensions of the constructed array is n plus the number of
dimensions of the element type T.

If E(r1, r2, ... rn) is a designator denoting a variable, then the array constructor
denotes an array variable. Array variables may be used as arguments for open
array parameters [10.5]. The following restrictions apply to designators E(r1, r2,
... rn) of array variable constructors:

1. Only a restricted form of designators is allowed, namely designators
observing the following syntactic production:

ArrayDesignator = QualIIdent {"[" ExpressionList "]" | "."}

2. An expression in the expression list of such a designator must either
contain no range identifier at all, or it must be transformable into the
form r*x + y where r is a range identifier and x and y contain no range
identifiers (i.e. the expression must be linear in r).

3. None of the index expressions containing a range identifier r must
denote the same (constant) value for all values of r (i.e. x must not be
zero in the expression r*x + y; cf. rule 2).

4. All range identifiers introduced by the preceeding range declaration
must be used at least once in the designator.

If E(r1, r2, ... rn) is an expression denoting a value, then the array constructor
denotes an array value. Array values may be used as arguments for the
predefined procedures SUM and PROD only.

Examples (see also examples in [7]):

Array constructor Denoted Array

[i = 0 .. 3: id[2*i + 1]] elements id[1], id[3], id[5], id[7] (variable)
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[j = 0 .. LEN(A)−1: A[j, j]] diagonal of A (variable)
[k = 0 .. N−1: a[k] * b[k]] elementwise product of a and b (value)

10.7 Operators

Operators are special characters, character pairs or reserved words [3.5]
denoting unary and binary operations. The operation denoted by an operator
may depend on the type(s) of its operand(s). There are 4 different precedence
classes for operators. The operator ˜ has the highest precedence, followed by
the multiplication operators, the addition operators and the relations. Operators
of the same precedence associate from left to right; e.g. x−y−z is an
abbreviation for (x−y)−z.

Expression = SimpleExpression [Relation SimpleExpression].
Relation = "=" | "#" | "<" | "<=" | ">" | ">=" | IN | IS.
SimpleExpression = ["−"] Term {AddOperator Term}.
AddOperator = "+" | "−" | "%" | "|".
Term = ["/"] Factor {MulOperator Factor}.
MulOperator = "*" | "/" | DIV | MOD | "&".
Factor =
Literal | Set | Designator | FunctionCall | "˜" Factor | "(" Expression ")".

10.7.1 Arithmetic Operators

The operators +, −, * and / apply to operands of numeric types [6.1]. The result
type is the smallest type which includes the types of both operands, except for
division (/), where the result type includes the type REAL too. The expression
0−e may be abbreviated to −e.

Symbol Result

+ sum
− difference
* product
/ quotient
DIV integer quotient
MOD modulus
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The operators DIV and MOD apply to integer operands only. For any dividend x
and positive divisor y the following relationships hold:

x : (x DIV y) * y + x MOD y
0 # x MOD y < y

10.7.2 Logical Operators

Logical operators apply to boolean operands [6.1] and yield a boolean result.
The evaluation of the operands of & and | proceeds from left to right and only
as many operands are evaluated as necessary for the determination of the
result.

Symbol Result Description

| disjunction p | q : if p then TRUE else q
& conjunction p & q : if p then q else FALSE
˜ negation ˜p : not p

10.7.3 Set Operators

Set operators apply to operands of type SET [6.1] and yield a result of this type.
A set expression of the form {0 .. MAX(SET)} / x may be abbreviated to /x. Note
that x / y : x * (/y).

Symbol Result Description

+ union x IN s + t : (x IN s) | (x IN t)
* intersection x IN s * t : (x IN s) & (x IN t)
/ difference x IN s / t : (x IN s) & ˜(x IN t)
% symmetric difference x IN s % t : (x IN s) # (x IN t)
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10.7.4 Relations

Relations yield a boolean result [6.1]. The ordering relations <, <=, > and >=
apply to operands of type CHAR, INTEGER and REAL [6.1] as well as to
character arrays [6.2] and strings [3.4]. The relations = and # apply to all
unstructured types [6] (including the value NIL) as well as to character arrays
and strings. x IN s tests whether x is an element of s. x must be of type
INTEGER and s of type SET.

Symbol Relation

= equal
# unequal
< less
<= less or equal
> greater
>= greater or equal
IN element test
IS type test

If the variable v is of record type [6.3], the type test v IS T holds if the dynamic
type of v is an extension of T. If v is a pointer type [6.4], v IS T holds if the
dynamic type of v↑ is an extension of T. The type test is applicable, if

1. v is a record variable parameter or v is a pointer (v 9 NIL), and if
2. the record type T is an extension of the static type of v (or v↑

respectively).

Examples (see also examples in [7]):

Expression Type

ch CHAR
1993 INTEGER
i + j DIV 2 INTEGER
s / {0 .. 9, k} SET
i + j / k REAL
x * (−y) + k REAL
f(i * x + 1.0E−3) REAL
(u + v) * 1.0i COMPLEX
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2*(u + RE(v)) COMPLEX
˜ok | (i # j) BOOLEAN
('a' <= ch) & (ch <= 'z') BOOLEAN
root.name < "lambda" BOOLEAN
k IN {i .. j−1} BOOLEAN
p.car IS Pair BOOLEAN

11 Statements

A statement denotes an action. Executing a statement means performing the
denoted action. There are elementary statements and structured statements. The
former are not composed of any parts that are themselves statements. They are
the assignment, the procedure call and the return statement. Structured
statements are composed of parts that are themselves statements; they are
used to express conditional, repetitive or parallel execution of its component
statements.

Let P and Q be predicates denoting the program states before and after the
execution of a statement S; i.e. P denotes a precondition of S and Q denotes a
postcondition. Then the predicate {P} S {Q} holds, if P holds before the
execution of S, S terminates and Q holds after the execution of S. An axiom of a
structured statement S specifies rules for its component statements Si and the
predicates P and Q, such that {P} S {Q} holds.

Statement =
Assignment | ProcedureCall | ReturnStatement |
IfStatement | CaseStatement |
WhileStatement | RepeatStatement | AllStatement.

11.1 Statement Sequences

A statement sequence denotes sequential execution of the component
statements. Any two textually consecutive statements must be separated by a
semicolon; the statement before the semicolon is executed before the
statement following the semicolon. An empty statement sequence denotes no
action at all.

StatementSequence = [Statement {";" Statement}].
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Axiom of statement sequences:

{P} S1; S2; ... Sn {Q}

holds if there exist conditions Pi and Qi such that

R i : 1 # i # n : {P i} Si {Qi}
R i : 1 < i # n : Qi−1 ↑ Pi
P ↑ P1
Qn↑ Q

11.2 Assignments

The execution of an assignment replaces the current value of a variable [7] by
the value of the specified expression [10].

Assignment = Designator ":=" Expression.

The type T(v) of the variable v in an assignment of the form v := e must be an
unstructured type [6] or a character array [6.2], and one of the following
conditions must hold for T(v) and the type of the expression T(e):

1. T(v) and T(e) are equal; or
2. T(v) and T(e) are numerical types and T(v) includes T(e); or
3. T(v) and T(e) are pointer types and the pointer base type of T(e) is an

extension of the pointer base type of T(v), or
4. T(v) is a pointer or procedure type and e is NIL, or
5. T(v) is a character array and T(e) is a character array or e is a string.

Then, e is copied to v and, if necessary, e is shortened to the length of
v. The character sequence in v is always terminated by the character
0X.

Examples (see also examples in [7]):

ch := CR
i := 0
x := RE(u)
y := 1 + x*pi
k := Size(root)
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u := u / ABS(u)
ok := (i < j) & (k IN {i .. j})
A[i, j] := A[i, k] * v
p := NIL
q := q.cdr{Pair}
root.left.name[0] := 0X

11.3 Procedure Calls

The execution of a procedure call activates the designated procedure. The call
consists of a designator denoting a proper procedure [8] possibly followed by a
list of arguments [10.5].

ProcedureCall = Designator ["(" ArgumentList ")"].

Examples (see also examples in [7] and [8]):

ReadInt(i)
WriteInt(ORD(ch))
saxpy(x, [i = 10 .. 20: a[i]], [i = 10 .. 20: b[i]])
INC(root.mark)
EXCL(s, 0)

11.4 RETURN Statement

A RETURN statement consists of the symbol RETURN, possibly followed by an
expression. It indicates the termination of a procedure, and the expression
specifies the result of a function procedure. Its type must be equal to the result
type specified in the procedure heading. The expression and the result type
must observe the rules for assignments.

ReturnStatement = RETURN [Expression].

Function procedures require the presence of a RETURN statement indicating the
result value. There may be several, although only one will be executed. In
proper procedures, a RETURN statement is implied by the end of the procedure
body. An explicit RETURN statement therefore appears as an additional
(probably exceptional) termination point.
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11.5 IF Statement

The IF statement specifies the conditional execution of guarded statements. The
statement sequence following the symbol THEN is executed if the preceding
boolean expression (guard) evaluates to true, otherwise the statement sequence
following the symbol ELSE is executed, if there is one.

IfStatement =
IF Expression THEN StatementSequence
{ELSIF Expression THEN StatementSequence}
[ELSE StatementSequence]
END.

An IF statement of the form

IF B1 THEN S1
ELSIF B2 THEN S2
...
ELSIF Bn THEN Sn
ELSE S0
END

is an abbreviation for

IF B1 THEN S1
ELSE
IF B2 THEN S2
ELSE
...

ELSE Bn THEN Sn
ELSE S0
END

...
END

END
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Axiom of the IF statement:

{P} IF B THEN S1 ELSE S2 END {Q}

holds if there exist conditions P1 and P2 such that

{P1} S1 {Q}
{P2} S2 {Q}
P Y B ↑ P1
P Y XB ↑ P2

Example:

IF ('0' <= ch) & (ch <= '9') THEN d := ORD(ch) − ORD('0')
ELSIF ('A' <= ch) & (ch <= 'F') THEN d := ORD(ch) − ORD('A')
ELSE Error; d := 0
END

11.6 CASE Statement

A CASE statement specifies the conditional execution of a statement sequence
selected by the value of an expression. After evaluation of the expression, the
statement sequence is executed, whose case label list contains the obtained
value. The case expression and all case labels must be of the same type which
must be CHAR or INTEGER. Case labels must be constant expressions and no
value must occur more than once. If the value of the case expression does not
occur as a label of any case, the statement sequence following the symbol ELSE
is executed, if there is one. Otherwise the program is aborted.

CaseStatement =
CASE Expression
{OF CaseLabelList THEN StatementSequence}
[ELSE StatementSequence]
END.

CaseLabelList = CaseLabels {"," CaseLabels}.
CaseLabels = ConstExpression [".." ConstExpression].
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Axiom of the CASE statement (each ki stands for a single case label):

{P}
CASE k
OF k1 THEN S1
OF k2 THEN S2
...
OF kn THEN Sn
ELSE S0
END
{Q}

holds, if there exist conditions Pi such that

R i : 0 # i # n : {P i} Si {Q}
R i : 0 < i # n : P Y (k = k i) ↑ Pi
R i : 0 < i # n : P Y (k 9 k i) ↑ P0

Example:

CASE ch
OF '(' THEN sym := lparen
OF 27X THEN sym := quote
OF ')' THEN sym := rparen
OF '.' THEN sym := period
OF '0' .. '9' THEN Number
OF 'A' .. 'Z', 'a' .. 'z' THEN Identifier
ELSE sym := null
END

11.7 WHILE Statement

A WHILE statement specifies the repeated execution of a statement sequence
as long as the preceding boolean expression (guard) evaluates to true. The
statement sequence may not be executed at all.

WhileStatement = WHILE Expression DO StatementSequence END.
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Axiom of the WHILE statement:

{P} WHILE B DO S END {Q}

holds if an invariant H exists such that

P ↑ H
{H Y B} S {H}
H Y XB ↑ Q

Examples:

WHILE x > 0 DO
IF ODD(x) THEN INC(i) END;
x := x DIV 2

END

WHILE (q # NIL) & (q.name # name) DO p := q; q := q.next END

11.8 REPEAT Statement

The REPEAT statement specifies the repeated execution of a statement
sequence until a condition is satisfied. The statement sequence is executed at
least once.

RepeatStatement = REPEAT StatementSequence UNTIL Expression.

Axiom of the REPEAT statement:

{P} REPEAT S UNTIL B {Q}

holds if there exists an invariant H such that

{P} S {H}
{H Y XB} S {H}
H Y B ↑ Q
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Example:

REPEAT
d[i] := ORD(x MOD 10 + ORD('0'));
x := x DIV 10; INC(i)

UNTIL x = 0

11.9 ALL Statement

The ALL statement specifies the potentially parallel execution of a set of
assignment sequences determined by an n_dimensional range declaration [9]
which preceds the assignments. For each element of the set R = {(i1, i2, ... in) :
(ik N ran(rk)) Y (1 # k # n)} where ran(rk) is the range associated with the range
identifier rk, the assignment sequence is executed exactly once. For a particular
assignment sequence, the range identifier rk stands for the value ik of the
element (i1, i2, ... in) corresponding to that assignment sequence.

AllStatement = ALL RangeDeclaration DO AssignmentSequence END.
AssignmentSequence = [Assignment {";" Assignment}].

Let i denote (i1, i2, ... in) for short. If S(i) denotes a particular assignment
sequence (i.e. the assignment sequence corresponding to the element (i1, i2, ...
in) N R), then S(i) must be independent of any other assignment sequence S(j)
with i 9 j; i.e. the order in which a range identifier rk assumes a value within its
associated range ran(rk) is unspecified. To be precise, let in(i) be the set of
variables accessed by S(i) and out(i) be the set of variables to which values
have been assigned to by S(i). Then, for any two different elements i, j N R the
following must hold:

1. in(i) G out(j) must be the empty set, and
2. out(i) G out(j) must be the empty set.

Axiom of the ALL statement:

{P} ALL i N R DO S(i) END {Q}

holds if conditions Pi and Qi exist such that
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P ↑ (R i : i N R : Pi)
R i : i N R : {Pi} S(i) {Qi}
(R i : i N R : Qi) ↑ Q

and

R i, j : i, j N R, i 9 j : (in(i) G out(j) = F) Y (out(i) G out(j) = F)

with in(i) : set of variables that have been accessed by S(i)
and out(i) : set of variables to which values have been assigned to by S(i)

Examples (see also examples in [7]):

ALL i = 0 .. LEN(c)−1 DO c[i*2] := i * pi END
ALL i = j .. k DO a[j] := SELECT(a[j] > 0, a[j], 0) * b[j] END
ALL i, j = 0 .. LEN(A)−1 DO A[i, j] := 1/(i+j+1) END
ALL r = 10 .. 20 DO a[r] := a[index[r]]; a[index[r]] := 0 END

12 Modules

A module is a collection of declarations of objects and a sequence of
statements for the purpose of assigning initial values to variables. A module
constitutes a text that is compilable as a unit.

A module consists of a module heading and a body. The heading defines the
module identifier and possibly imported modules. The body contains
declarations and statements that are executed, when the module is added to a
system (loaded). The module identifier must be repeated at the end of the
module specification.

Module = ModuleHeading ";" Body END ident ".".
ModuleHeading = MODULE ident [ImportList].
ImportList = "(" Import {"," Import} ")".
Import = Ident [":=" ident].

The import list specifies the modules which are imported and hence of which
the importing module is a client. If an identifier x is exported [4] by a module
M, and M appears in a module's import list, then x is referred to as M.x within
the importing module. An import of the form M1 := M may be used to (locally)
substitute the module identifier M by M1. An identifier x exported by the
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module M is then referred to as M1.x within the importing module.
The values of global variables are undefined upon loading of the module.

The statements in bodies of imported modules are executed before any
statement of the importing module is executed.

Example:

MODULE Out (Unix);

CONST maxLen = 80;
VAR len: INTEGER;

PROCEDURE Ln*;
BEGIN Unix.Put(0AX); Unix.Flush; len := 0
END Ln;

PROCEDURE Char* (x: CHAR);
BEGIN
IF len = maxLen THEN Ln END;
Unix.Put(ch); INC(len)

END Char;

PROCEDURE String* (VAR s: ARRAY OF CHAR);
VAR i: INTEGER;

BEGIN i := 0;
WHILE (i < LEN(s)) & (s[i] # 0X) DO Char(s[i]); INC(i) END

END String;

PROCEDURE Int* (x: INTEGER);
VAR i: INTEGER; d: ARRAY 16 OF CHAR;

BEGIN i := 0;
IF x < 0 THEN x := −x; Char('−') END;
REPEAT d[i] := CHR(x MOD 10 + 30H); x := x DIV 10; INC(i)
UNTIL x = 0;
REPEAT DEC(i); Char(d[i]) UNTIL i = 0

END Int;
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PROCEDURE Set* (s: SET);
VAR i, j: INTEGER;

BEGIN
Char('{'); j := 0;
WHILE s # {} DO
IF j IN s THEN i := j;
REPEAT EXCL(s, j); INC(j) UNTIL (s = {}) | ˜(j IN s);
Int(i);
IF i+2 = j THEN String(", "); Int(j−1)
ELSIF i+2 < j THEN String(" .. "); Int(j−1)
END;
IF s # {} THEN String(", ") END

END;
INC(j)

END;
Char('}')

END Set;

BEGIN Unix.Init; len := 0
END Out.

12.1 The Module SYSTEM

The module SYSTEM provides procedures that are necessary to program certain
low level operations and to circumvent the type system of Oberon_V. A module
importing SYSTEM must be considered to be inherently unsafe and
non_portable; therefore SYSTEM should be used very restrictively. Although the
operations provided by it are machine specific and hence may vary from
machine to machine, the following procedures are assumed to be found in
every SYSTEM implementation. x, y and n stand for expressions, v stands for a
variable and T for a type.

Function procedures:

Call Argument types Result type Function

ADR(v) any type INTEGER address of variable v
LSL(x, n) INTEGER INTEGER logical shift left by n bits
LSR(x, n) INTEGER INTEGER logical shift right by n bits
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SIZE(T) any type INTEGER space required by T
VAL(T, x) any type type of T x interpreted as of type T

Proper procedures:

Call Argument types Function

GET(a, v) a: INTEGER; v := Mem[a]
v: any unstructured type

PUT(a, x) a: INTEGER; Mem[a] := x
v: any unstructured type

MOVE (x, y, n) INTEGER ALL i = 0 .. n−1 DO
Mem[y+i] := Mem[x+i]

END
NEW(v, n) v: any pointer type allocate storage block of n

n: integer type words and assign its
address to v





Appendix B:

Program Examples

The following program examples shall demonstrate the usage of ALL
statements and of array constructors. The BLA routines as well as the Linpack
procedures have been adapted from [Dongarra 1979].

1 BLAS

Module OVBlas contains five of the most frequently used BLA subroutines. This
module has been used for the measurements in Section 6.1.

MODULE OVBlas;

TYPE

RealVector* = ARRAY OF REAL;

PROCEDURE isamax* (VAR x: RealVector): INTEGER;

VAR i, j: INTEGER; max: REAL;

BEGIN max := ABS(x[0]); i := 0; j := 1;

WHILE j < LEN(x) DO

IF ABS(x[j]) > max THEN max := ABS(x[j]); i := j END;

INC(j)

END;

RETURN i

END isamax;

PROCEDURE sscal* (a: REAL; VAR x: RealVector);

BEGIN ALL i = 0 .. LEN(x)−1 DO x[i] := a * x[i] END

END sscal;
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PROCEDURE saxpy* (a: REAL; VAR x, y: RealVector);

BEGIN

ASSERT(LEN(x) = LEN(y));

ALL i = 0 .. LEN(x)−1 DO y[i] := a * x[i] + y[i] END

END saxpy;

PROCEDURE sasum* (VAR x: RealVector): REAL;

BEGIN RETURN SUM([i = 0 .. LEN(x) − 1: ABS(x[i])])

END sasum;

PROCEDURE sdot* (VAR x, y: RealVector): REAL;

BEGIN RETURN SUM([i = 0 .. LEN(x) −1: x[i] * y[i]])

END sdot;

END OVBlas.

2 Linpack

Module OVLinpack1 contains a one_to_one translation of the Linpack
procedures sgefa and sgesl. They are used to solve general systems of
simultaneous linear algebraic equations. For a detailed discussion of the
algorithms the reader is referred to [Dongarra 1979].

MODULE OVLinpack1 (Blas := OVBlas);

TYPE

IntVector* = ARRAY OF INTEGER;

RealVector* = Blas.RealVector;

RealMatrix* = ARRAY OF RealVector;

PROCEDURE sgefa* (VAR a: RealMatrix; VAR ipvt: IntVector; VAR info: INTEGER);

VAR

j, k, kp1, l, n, nm1: INTEGER;

t: REAL;

BEGIN

info := −1; n := LEN(a); nm1 := n−1;

IF nm1 >= 1 THEN k := 0;

WHILE k < nm1 DO kp1 := k+1;

(* find l = pivot index *)

l := Blas.isamax([i = k .. nm1: a[i, k]]) + k;

ipvt[k] := l;

(* zero pivot implies this column already triangularized *)

IF a[l, k] # 0 THEN

(* interchange if necessary *)

IF l # k THEN t := a[l, k]; a[l, k] := a[k, k]; a[k, k] := t END;
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(* compute multipliers *)

t := −1/a[k, k];

Blas.sscal(t, [i = kp1 .. nm1: a[i, k]]);

(* row elimination with column indexing *)

j := kp1;

WHILE j < n DO t := a[l, j];

IF l # k THEN a[l, j] := a[k, j]; a[k, j] := t END;

Blas.saxpy(t, [i = kp1 .. nm1: a[i, k]], [i = kp1 .. nm1: a[i, j]]);

INC(j)

END

ELSE info := kp1

END;

k := kp1

END

END;

ipvt[nm1] := nm1;

IF a[nm1, nm1] = 0 THEN info := n END

END sgefa;

PROCEDURE sgesl*

(VAR a: RealMatrix; VAR ipvt: IntVector; VAR b: RealVector; job: INTEGER);

VAR

n, k, kb, l, nm1: INTEGER;

t: REAL;

BEGIN

n := LEN(a); nm1 := n−1;

IF job = 0 THEN

(* solve a * x = b; first solve l * y = b *)

IF nm1 >= 1 THEN k := 0;

WHILE k < nm1 DO

l := ipvt[k]; t := b[l];

IF l # k THEN b[l] := b[k]; b[k] := t END;

Blas.saxpy(t, [i = 1 .. n−k−1: a[k+i, k]], [i = 1 .. n−k−1: b[k+i]]);

INC(k)

END

END;

(* now solve u * x = y *)

kb := 0;

WHILE kb < n DO

k := n − 1 − kb;

b[k] := b[k] / a[k, k];

t := −b[k];

Blas.saxpy(t, [i = 0 .. k−1: a[i, k]], [i = 0 .. k−1: b[i]]);

INC(kb)

END

ELSE

(* solve trans(u) * x = b; first solve trans(u) * y = b *)

k := 0;
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WHILE k < n DO

t := Blas.sdot([i = 0 .. k−1: a[i, k]], [i = 0 .. k−1: b[i]]);

b[k] := (b[k] − t) / a[k, k];

INC(k)

END;

(* now solve trans(l) * x = y *)

IF nm1 >= 1 THEN kb := 0;

WHILE kb < nm1 DO

k := n − 1 − kb;

b[k] := Blas.sdot([i = 1 .. n−k−1: a[k+i, k]], [i = 1 .. n−k−1: b[k+i]]) + b[k];

l := ipvt[k];

IF l # k THEN t := b[l]; b[l] := b[k]; b[k] := t END;

INC(kb)

END

END

END

END sgesl;

END OVLinpack1.

Module OVLinpack2 contains the same procedures as OVLinpack1, but with
"inlined" ALL statements instead of the BLAS calls. Because the BLA procedures
reduce to simple "one_liners" when using ALL statements, this leads to a better
readable program (only the procedure sgefa is shown). This module has been
used for the measurements in Section 6.2.

MODULE OVLinpack2 (Blas := OVBlas);

TYPE

IntVector* = ARRAY OF INTEGER;

RealVector* = Blas.RealVector;

RealMatrix* = ARRAY OF RealVector;

PROCEDURE sgefa* (VAR a: RealMatrix; VAR ipvt: IntVector; VAR info: INTEGER);

VAR j, k, l, n: INTEGER; t: REAL;

BEGIN

info := −1; n := LEN(a);

IF n > 1 THEN k := 0;

WHILE k < n−1 DO;

(* find l = pivot index *)

l := Blas.isamax([i = k .. n−1: a[i, k]]) + k ;

ipvt[k] := l;

(* zero pivot implies this column already triangularized *)

IF a[l, k] # 0 THEN

(* interchange if necessary *)

IF l # k THEN t := a[l, k]; a[l, k] := a[k, k]; a[k, k] := t; END;
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(* compute multipliers *)

t := −1/a[k, k];

ALL i = k+1 .. n−1 DO a[i, k] := t*a[i, k] END;

(* row elimination with column indexing *)

j := k+1;

WHILE j < n DO t := a[l, j];

IF l # k THEN a[l, j] := a[k, j]; a[k, j] := t END;

ALL i = k+1 .. n−1 DO a[i, j] := a[i, j] + t*a[i, k] END;

INC(j)

END

ELSE info := k

END;

INC(k)

END

END;

ipvt[n−1] := n−1;

IF a[n−1, n−1] = 0 THEN info := n−1 END

END sgefa;

END OVLinpack2.

3 Factorial

Module Factorial computes all digits of n factorial (n!). The result is stored in
an array X of length L. X contains digits to the base B (1000000), i.e. the value
of X is:

X[L−1]*BL−1 + X[L−2]*BL−2 + ... + X[1]*B1 + X[0]*B0

The result is obtained by multiplying the value of X with n, n−1, ... 2, starting
with X[0] = 1 and L = 1 (procedure BigFact). A special multiply step (procedure
MultiplyStep) is used, which computes result digits and carrys separately. This
subdivision allows for using the ALL statement. In order to obtain better
performance on the Cray Y_MP, real arithmetic is used instead of integer
arithmetic. The operations DIV and MOD are "emulated" using the following
relationships:

x DIV y = TRUNC((x + 0.5) / y) (for x 3 0 and y > 0)
x MOD y = x − y * TRUNC((x + 0.5) / y) (for x 3 0 and y > 0)
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Since machine division (/) is not exact, a correction value is required (0.5). The
result is correct, if e < 1 / 2y ,where e is the absolute error of the machine
division x/y (without proof). The same method is used by the Oberon_V
compiler to implement the integer operations DIV and MOD.

MODULE Factorial (Out, Timer);

CONST B = 1000000; logB = 6;

VAR

X, C1, C2, H: ARRAY 100000 OF REAL;

L: INTEGER;

PROCEDURE MultiplyStep (Y: INTEGER);

BEGIN

(* independant digit multiply *)

C2[0] := 0;

ALL i = 0 .. L−1 DO

H[i] := (X[i] + C1[i]) * Y;

C2[i+1] := TRUNC((H[i] + 0.5) / B); (* real DIV *)

X[i] := H[i] − B * C2[i+1] (* real MOD *)

END;

IF C2[L] > 0 THEN X[L] := 0; L := L+1 END;

(* independant carry reduction *)

C1[0] := 0;

ALL i = 0 .. L−1 DO

H[i] := X[i] + C2[i];

C1[i+1] := TRUNC((H[i] + 0.5) / B); (* real DIV *)

X[i] := H[i] − B * C1[i+1] (* real MOD *)

END;

IF C1[L] > 0 THEN X[L] := 0; L := L+1 END

END MultiplyStep;

PROCEDURE CleanUp;

VAR i: INTEGER; h, c: REAL;

BEGIN i := 0; c := 0;

WHILE i < L DO

h := X[i] + C1[i] + c;

c := TRUNC((h + 0.5) / B); (* real DIV *)

X[i] := h − B*c; (* real MOD *)

i := i+1

END;

IF c > 0 THEN X[L] := c; L := L+1 END

END CleanUp;

PROCEDURE BigFact (n: INTEGER);

BEGIN L := 1; X[0] := 1; C1[0] := 0;
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WHILE n > 1 DO MultiplyStep(n); n := n−1 END;

CleanUp

END BigFact;

PROCEDURE WriteInt (x: INTEGER; n: INTEGER); (* x >= 0 *)

VAR i: INTEGER; d: ARRAY 10 OF CHAR;

BEGIN i := 0;

REPEAT d[i] := CHR(x MOD 10 + 30H); x := x DIV 10; i := i+1 UNTIL x = 0;

WHILE n > i DO n := n−1; Out.Char('0') END;

WHILE i > 0 DO i := i−1; Out.Char(d[i]) END

ENDWriteInt;

PROCEDURE WriteRes;

VAR i, i0, count: INTEGER;

BEGIN

IF L > 0 THEN i := L−1; WriteInt(TRUNC(X[i]), logB); count := logB; i0 := i−100;

IF i0 < 0 THEN i0 := 0 END;

WHILE i > i0 DO i := i−1; WriteInt(TRUNC(X[i]), logB); count := count + logB;

IF count >= 72 THEN Out.Ln; count := 0 END

END;

IF i0 > 0 THEN Out.String("...") END;

Out.String(" (L = "); Out.Int(L); Out.Char(')')

END;

Out.Ln

ENDWriteRes;

PROCEDURE Fact (n: INTEGER);

BEGIN ASSERT(n < B);

WriteInt(n, 0); Out.String("! = "); BigFact(n); WriteRes; Out.Ln

END Fact;

BEGIN

Timer.Reset;

Timer.Start; Fact(1000); Timer.Stop;

Timer.Times; Out.Ln

END Factorial.

All digits of 1000! can be computed in 28ms on the Cray Y_MP:

1000! = 40238726007709377354370243392300398571937486421071463254379991

04299385123986290205920442084869694048004799886101971960586316668729

94808558901323829669944590997424504087073759918823627727188732519779

50595099527612087497546249704360141827809464649629105639388743788648

73371191810458257836478499770124766328898359557354325131853239584630

75557409114262417474349347553428646576611667797396668820291... (L = 428)

time = 0.0279850799440299s clocks = 4664180


